Model: gemini-3-pro-preview

sample_run04

Select Configuration:

📊 Sample Metrics

🔍 Exploration

last_node_coverage: 1
last_edge_coverage: 0.561
n_exploration_steps: 16
action_counts:
move: 5
rotate: 11
return: 0
observe: 15
term: 1
forced_term: 0
query: 0
action_cost: 15
final_information_gain: 0.870
action_fail_ratio: 0
valid_action_ratio: 1
false_belief_steps: 12
false_belief_f1: 1
false_belief_f1_position: 1
false_belief_f1_facing: 1
false_belief_action_cost: 11
false_belief_action_cost_after_seen: 0

✅ Evaluation

overall:
n_total: 27
total_score: 22.248
avg_accuracy: 0.824
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
PovEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
AlloMappingEvaluationTask:
n_total: 3
task_score: 2.739
avg_accuracy: 0.913
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 0.500
avg_accuracy: 0.167
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.509
avg_accuracy: 0.836

✅ Evaluation (prompt_cogmap)

overall:
n_total: 27
total_score: 22.580
avg_accuracy: 0.836
per_task:
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
AlloMappingEvaluationTask:
n_total: 3
task_score: 2.431
avg_accuracy: 0.810
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 0
avg_accuracy: 0
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.649
avg_accuracy: 0.883
DirectionEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833
PovEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1

✅ Evaluation (use_gt_cogmap)

overall:
n_total: 27
total_score: 26.819
avg_accuracy: 0.993
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
PovEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
AlloMappingEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.819
avg_accuracy: 0.940

✅ Evaluation (use_model_cogmap)

overall:
n_total: 27
total_score: 19.961
avg_accuracy: 0.739
per_task:
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
AlloMappingEvaluationTask:
n_total: 3
task_score: 2.312
avg_accuracy: 0.771
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 0.500
avg_accuracy: 0.167
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.649
avg_accuracy: 0.883
DirectionEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
PovEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833

🧠 Cognitive Map

exploration:
error:
local_vs_gt_local_avg:
dir: 0.876
facing: 1
pos: 0.897
overall: 0.924
global_vs_gt_global_avg:
dir: 0.847
facing: 0.946
pos: 0.852
overall: 0.882
agent_vs_gt_agent_avg:
dir: 1
facing: 1
pos: 0.908
overall: 0.969
newly_observed_vs_gt_local_avg:
dir: 0.872
facing: 1
pos: 0.890
overall: 0.921
correctness:
last_global_vs_gt_full:
dir: 0.883
facing: 1
pos: 0.842
overall: 0.908
consistency:
local_vs_global_avg:
dir: 0.879
facing: 0.939
pos: 0.906
overall: 0.908
position_update_avg: 0.764
facing_update_avg: 0.967
position_stability_avg: 0.764
facing_stability_avg: 0.967
fog_probe:
f1_avg: 0.526
precision_avg: 0.537
recall_avg: 0.519
cogmap_fb:
metrics:
changed:
dir: None
pos: 0.831
facing: 1
overall: None
retention:
dir: None
pos: 0.351
facing: 0
overall: None
unchanged:
dir: 0.777
facing: 0.784
pos: 0.803
overall: 0.788
inertia: 0.000
inertia_list: [0.0008266023661020548, 8.004853780867221e-06]
unchanged_retention:
dir: None
pos: 0.860
facing: 1
overall: None
unchanged_retention_minus_retention:
pos: 0.834
facing: 1
unchanged_exploration:
dir: 0.818
facing: 1
pos: 0.843
overall: 0.887

🧭 False Belief CogMap

inertia: 0.000
changed:
dir: None
pos: 0.831
facing: 1
overall: None
retention:
dir: None
pos: 0.351
facing: 0
overall: None
unchanged:
dir: 0.777
facing: 0.784
pos: 0.803
overall: 0.788
unchanged_retention:
dir: None
pos: 0.860
facing: 1
overall: None
unchanged_retention_minus_retention:
pos: 0.834
facing: 1
unchanged_exploration:
dir: 0.818
facing: 1
pos: 0.843
overall: 0.887

📊 Performance Charts

Cognitive Map (Update)
Global Update Metrics
Cognitive Map (Full)
Global Full Metrics
Cognitive Map (Self-Tracking)
Global Self-Tracking Metrics
FB CogMap (Unchanged)
False Belief CogMap Unchanged per Turn
Fog Probe F1
Fog Probe F1 per Turn
Fog Probe Precision
Fog Probe Precision per Turn
Fog Probe Recall
Fog Probe Recall per Turn
Position Update
Position Update per Turn
Facing Update
Facing Update per Turn
Position Stability
Position Stability per Turn
Facing Stability
Facing Stability per Turn

🌍 Exploration Phase

🔄 Turn 1

💬 Assistant Action
Actions: [Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        1,
        3
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -3,
        4
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        1,
        3
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -3,
        4
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
###############
#......#......#
#......#....DB#
#......#...C..#
#......+.F..*.#
#......#..A.E.#
#......#......#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, E, F
🎯 Ground Truth: E, F, A
🧠 Cognitive Map Metrics
Global:
dir: 0.833
facing: 1
pos: 0.860
overall: 0.898
Global (Full):
dir: 0.042
facing: 0.250
pos: 0.172
overall: 0.155
Local:
dir: 1
facing: 1
pos: 0.912
overall: 0.971
Local (Newly):
dir: 1
facing: 1
pos: 0.912
overall: 0.971
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 1
action_counts:
move: 0
rotate: 0
return: 0
observe: 1
term: 0
forced_term: 0
query: 0
information_gain: 0.111
reward: -0.100
is_done: False
is_valid_action: True
Current state
State at Turn 1

🔄 Turn 2

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      5
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#....B.#
#......#....A.#
#......#.....E#
#......+CD..*.#
#......#......#
#......#.F....#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: C, D, F
🎯 Ground Truth: C, D, F
🧠 Cognitive Map Metrics
Global:
dir: 0.500
facing: 1
pos: 0.844
overall: 0.781
Global (Full):
dir: 0.025
facing: 0.250
pos: 0.169
overall: 0.148
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 2
action_counts:
move: 0
rotate: 1
return: 0
observe: 2
term: 0
forced_term: 0
query: 0
information_gain: 0.111
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 Turn 3

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -2,
        3
      ]
    },
    "brown door": {
      "position": [
        1,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "plant": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -2,
        3
      ]
    },
    "brown door": {
      "position": [
        1,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "plant": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  }
}
🗺️ Symbolic Fog Map
###############
#......#.C....#
#......#.....D#
#......#......#
#......+.F.A*.#
#......#....B.#
#......#.E....#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, E, F
🎯 Ground Truth: A, F, E
🧠 Cognitive Map Metrics
Global:
dir: 0.933
facing: 1
pos: 0.889
overall: 0.941
Global (Full):
dir: 0.117
facing: 0.250
pos: 0.296
overall: 0.221
Local:
dir: 0.667
facing: 1
pos: 0.877
overall: 0.848
Local (Newly):
dir: 0.667
facing: 1
pos: 0.877
overall: 0.848
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.286
edge_coverage: 0.098
is_action_fail: False
step: 3
action_counts:
move: 0
rotate: 2
return: 0
observe: 3
term: 0
forced_term: 0
query: 0
information_gain: 0.240
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 Turn 4

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "west"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        1,
        3
      ],
      "facing": "-y"
    },
    "teddybear": {
      "position": [
        3,
        4
      ],
      "facing": "-y"
    },
    "red door": {
      "position": [
        0,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "truck": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      0,
      5
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      3,
      3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        1,
        3
      ],
      "facing": "-y"
    },
    "teddybear": {
      "position": [
        3,
        4
      ],
      "facing": "-y"
    },
    "red door": {
      "position": [
        0,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "truck": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      0,
      5
    ],
    "facing": "east"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.929
facing: 1
pos: 0.932
overall: 0.954
Global (Full):
dir: 0.217
facing: 0.333
pos: 0.435
overall: 0.328
Local:
dir: 0.667
facing: 1
pos: 0.927
overall: 0.865
Local (Newly):
dir: 1
facing: 1
pos: 1
overall: 1
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0.429
edge_coverage: 0.146
is_action_fail: False
step: 4
action_counts:
move: 0
rotate: 3
return: 0
observe: 4
term: 0
forced_term: 0
query: 0
information_gain: 0.396
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 Turn 5

💬 Assistant Action
Actions: [JumpTo(red door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -6,
      0
    ],
    "facing": "west"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "right"
  },
  "teddybear": {
    "position": [
      -2,
      5
    ],
    "facing": "right"
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "south"
  },
  "red door": {
    "position": [
      -6,
      0
    ]
  },
  "airplane": {
    "position": [
      -10,
      4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -8,
      -2
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -12,
      1
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        4,
        4
      ],
      "facing": "+y"
    },
    "laptop": {
      "position": [
        -2,
        2
      ],
      "facing": "+x"
    },
    "backpack": {
      "position": [
        2,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "backpack": {
    "position": [
      1,
      6
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -1,
      2
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      3,
      6
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        4,
        4
      ],
      "facing": "+y"
    },
    "laptop": {
      "position": [
        -2,
        2
      ],
      "facing": "+x"
    },
    "backpack": {
      "position": [
        2,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "backpack": {
    "position": [
      1,
      6
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -1,
      2
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      3,
      6
    ],
    "facing": "west"
  }
}
🗺️ Symbolic Fog Map
###############
#.....F#......#
#....AC#......#
#....E.#......#
#......*......#
#......#......#
#...B.D#......#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: (none)
🎯 Ground Truth: C, F, D
🧠 Cognitive Map Metrics
Global:
dir: 0.855
facing: 0.571
pos: 0.856
overall: 0.761
Global (Full):
dir: 0.392
facing: 0.333
pos: 0.571
overall: 0.432
Local:
dir: 0.667
facing: 1
pos: 0.807
overall: 0.825
Local (Newly):
dir: 0.667
facing: 1
pos: 0.807
overall: 0.825
Fog Probe:
precision: 0
recall: 0
overall: 0
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.220
is_action_fail: False
step: 5
action_counts:
move: 1
rotate: 3
return: 0
observe: 5
term: 0
forced_term: 0
query: 0
information_gain: 0.511
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 Turn 6

💬 Assistant Action
Actions: [JumpTo(backpack), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -10,
      2
    ],
    "facing": "west"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -8,
      4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -7,
      -2
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -10,
      2
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#E..D.C#......#
#.....A#......#
#*.....#......#
#.B....+......#
#......#......#
#.....F#......#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, C, F
🎯 Ground Truth: A, F, C
🧠 Cognitive Map Metrics
Global:
dir: 0.855
facing: 0.714
pos: 0.839
overall: 0.803
Global (Full):
dir: 0.392
facing: 0.417
pos: 0.559
overall: 0.456
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.220
is_action_fail: False
step: 6
action_counts:
move: 2
rotate: 3
return: 0
observe: 6
term: 0
forced_term: 0
query: 0
information_gain: 0.511
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 Turn 7

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -9,
      2
    ],
    "facing": "north"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      0,
      -3
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      4
    ],
    "facing": "west"
  },
  "laptop": {
    "position": [
      -7,
      -2
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      -9,
      2
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        2
      ],
      "facing": "-x"
    }
  }
}
🎯 Ground Truth
{
  "airplane": {
    "position": [
      0,
      2
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        2
      ],
      "facing": "-x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#....F.#......#
#E....B#......#
#*....D#......#
#......+......#
#......#......#
#.A...C#......#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, C
🎯 Ground Truth: F, C, B
🧠 Cognitive Map Metrics
Global:
dir: 0.873
facing: 0.857
pos: 0.831
overall: 0.854
Global (Full):
dir: 0.400
facing: 0.500
pos: 0.554
overall: 0.485
Local:
dir: 1
facing: 1
pos: 1
overall: 1
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 0.333
overall: 0.400
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.244
is_action_fail: False
step: 7
action_counts:
move: 2
rotate: 4
return: 0
observe: 7
term: 0
forced_term: 0
query: 0
information_gain: 0.511
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 Turn 8

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -9,
      2
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      5
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      4
    ],
    "facing": "west"
  },
  "backpack": {
    "position": [
      -9,
      2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -2
    ],
    "facing": "north"
  },
  "shoppingcart": {
    "position": [
      -5,
      5
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "shoppingcart": {
      "position": [
        -3,
        5
      ],
      "facing": "-x"
    },
    "laptop": {
      "position": [
        3,
        5
      ],
      "facing": "-x"
    },
    "red door": {
      "position": [
        1,
        6
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "laptop": {
    "position": [
      2,
      4
    ],
    "facing": "north"
  },
  "shoppingcart": {
    "position": [
      -2,
      4
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      1,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "shoppingcart": {
      "position": [
        -3,
        5
      ],
      "facing": "-x"
    },
    "laptop": {
      "position": [
        3,
        5
      ],
      "facing": "-x"
    },
    "red door": {
      "position": [
        1,
        6
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "shoppingcart": {
    "position": [
      -2,
      4
    ],
    "facing": "north"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.803
facing: 1
pos: 0.805
overall: 0.869
Global (Full):
dir: 0.442
facing: 0.667
pos: 0.591
overall: 0.566
Local:
dir: 0.833
facing: 1
pos: 0.860
overall: 0.898
Local (Newly):
dir: 1
facing: 1
pos: 0.831
overall: 0.944
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.293
is_action_fail: False
step: 8
action_counts:
move: 2
rotate: 5
return: 0
observe: 8
term: 0
forced_term: 0
query: 0
information_gain: 0.536
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 Turn 9

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -9,
      2
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      5
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      4
    ],
    "facing": "west"
  },
  "laptop": {
    "position": [
      -6,
      -2
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -9,
      2
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -6,
      5
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -11,
      1
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🧠 Cognitive Map Metrics
Global:
dir: 0.818
facing: 1
pos: 0.811
overall: 0.877
Global (Full):
dir: 0.450
facing: 0.667
pos: 0.595
overall: 0.571
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.293
is_action_fail: False
step: 9
action_counts:
move: 2
rotate: 6
return: 0
observe: 9
term: 0
forced_term: 0
query: 0
information_gain: 0.536
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 9
Current state
State at Turn 9

🔄 Turn 10

💬 Assistant Action
Actions: [Rotate(-90), JumpTo(red door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "backpack": {
    "position": [
      -10,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -10,
      3
    ],
    "facing": "west"
  },
  "laptop": {
    "position": [
      -7,
      -2
    ],
    "facing": "north"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        -3,
        5
      ],
      "facing": "+y"
    },
    "truck": {
      "position": [
        -2,
        3
      ],
      "facing": "+y"
    },
    "plant": {
      "position": [
        2,
        5
      ]
    },
    "brown door": {
      "position": [
        4,
        4
      ]
    }
  }
}
🎯 Ground Truth
{
  "truck": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      -3,
      6
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      3,
      4
    ],
    "facing": "north"
  },
  "plant": {
    "position": [
      2,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        -3,
        5
      ],
      "facing": "+y"
    },
    "truck": {
      "position": [
        -2,
        3
      ],
      "facing": "+y"
    },
    "plant": {
      "position": [
        2,
        5
      ]
    },
    "brown door": {
      "position": [
        4,
        4
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🧠 Cognitive Map Metrics
Global:
dir: 0.970
facing: 1
pos: 0.924
overall: 0.965
Global (Full):
dir: 0.533
facing: 0.667
pos: 0.678
overall: 0.626
Local:
dir: 0.900
facing: 1
pos: 0.864
overall: 0.921
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.390
is_action_fail: False
step: 10
action_counts:
move: 3
rotate: 7
return: 0
observe: 10
term: 0
forced_term: 0
query: 0
information_gain: 0.603
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 10
Current state
State at Turn 10

🔄 Turn 11

💬 Assistant Action
Actions: [JumpTo(brown door), Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -4,
      2
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "truck": {
    "position": [
      -4,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -4,
      0
    ]
  },
  "airplane": {
    "position": [
      -8,
      2
    ],
    "facing": "west"
  },
  "laptop": {
    "position": [
      -6,
      -2
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -8,
      1
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      0,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -6
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        2,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        2,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  }
}
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#......#
#......+......#
#......#......#
#......#......#
###########*###
######....F.###
######.AE...###
######......###
######D....B###
######......###
######...C..###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: B, C
🎯 Ground Truth: D, E, A
🧠 Cognitive Map Metrics
Global:
dir: 0.808
facing: 1
pos: 0.795
overall: 0.868
Global (Full):
dir: 0.808
facing: 1
pos: 0.795
overall: 0.868
Local:
dir: 0.900
facing: 1
pos: 0.912
overall: 0.937
Local (Newly):
dir: 0.900
facing: 1
pos: 0.912
overall: 0.937
Fog Probe:
precision: 0
recall: 0
overall: 0
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.488
is_action_fail: False
step: 11
action_counts:
move: 4
rotate: 8
return: 0
observe: 11
term: 0
forced_term: 0
query: 0
information_gain: 0.848
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 11
Current state
State at Turn 11

🔄 Turn 12

💬 Assistant Action
Actions: [JumpTo(green chair), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -6
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      5
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      3
    ],
    "facing": "west"
  },
  "backpack": {
    "position": [
      -9,
      1
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -6,
      -2
    ],
    "facing": "north"
  },
  "shoppingcart": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -4,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -7
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        0,
        2
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      0,
      2
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        0,
        2
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#......#
#......+......#
#......#......#
#......#......#
###########+###
######.D.E.A###
######.B....###
######...F.C###
######.....*###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, C, D
🎯 Ground Truth: B, D, E
🧠 Cognitive Map Metrics
Global:
dir: 0.842
facing: 1
pos: 0.828
overall: 0.890
Global (Full):
dir: 0.842
facing: 1
pos: 0.828
overall: 0.890
Local:
dir: 1
facing: 1
pos: 1
overall: 1
Local (Newly):
(none)
Fog Probe:
precision: 0.333
recall: 0.333
overall: 0.333
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.512
is_action_fail: False
step: 12
action_counts:
move: 5
rotate: 8
return: 0
observe: 12
term: 0
forced_term: 0
query: 0
information_gain: 0.848
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 12
Current state
State at Turn 12

🔄 Turn 13

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "grid": "N/A",
  "agent": {
    "position": [
      0,
      -6
    ],
    "facing": "west"
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      0,
      -3
    ]
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      3
    ],
    "facing": "west"
  },
  "laptop": {
    "position": [
      -7,
      -2
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -10,
      1
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -6,
      4
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      0,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -2,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "toilet": {
      "position": [
        0,
        2
      ],
      "facing": "-x"
    },
    "television": {
      "position": [
        -4,
        4
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      0,
      2
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -2,
      4
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "toilet": {
      "position": [
        0,
        2
      ],
      "facing": "-x"
    },
    "television": {
      "position": [
        -4,
        4
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#......#
#......+......#
#......#......#
#......#......#
###########+###
######...A..###
######......###
######.....B###
######.....*###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B
🤖 Predicted: B
🎯 Ground Truth: A
🧠 Cognitive Map Metrics
Global:
dir: 0.892
facing: 1
pos: 0.850
overall: 0.914
Global (Full):
dir: 0.892
facing: 1
pos: 0.850
overall: 0.914
Local:
dir: 1
facing: 1
pos: 0.831
overall: 0.944
Local (Newly):
(none)
Fog Probe:
precision: 0
recall: 0
overall: 0
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.561
is_action_fail: False
step: 13
action_counts:
move: 5
rotate: 9
return: 0
observe: 13
term: 0
forced_term: 0
query: 0
information_gain: 0.870
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 13
Current state
State at Turn 13

🔄 Turn 14

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      5
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      -1,
      -4
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      4
    ],
    "facing": "west"
  },
  "laptop": {
    "position": [
      -8,
      -2
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      -9,
      2
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -6,
      4
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -9
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "brown door": {
    "position": [
      0,
      4
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🧠 Cognitive Map Metrics
Global:
dir: 0.858
facing: 1
pos: 0.853
overall: 0.904
Global (Full):
dir: 0.858
facing: 1
pos: 0.853
overall: 0.904
Local:
dir: 1
facing: 1
pos: 0.877
overall: 0.959
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.561
is_action_fail: False
step: 14
action_counts:
move: 5
rotate: 10
return: 0
observe: 14
term: 0
forced_term: 0
query: 0
information_gain: 0.870
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 14
Current state
State at Turn 14

🔄 Turn 15

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      4
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -4
    ]
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -9,
      3
    ],
    "facing": "west"
  },
  "backpack": {
    "position": [
      -9,
      1
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -6,
      -2
    ],
    "facing": "north"
  },
  "shoppingcart": {
    "position": [
      -6,
      4
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -9
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.900
facing: 1
pos: 0.870
overall: 0.923
Global (Full):
dir: 0.900
facing: 1
pos: 0.870
overall: 0.923
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.561
is_action_fail: False
step: 15
action_counts:
move: 5
rotate: 11
return: 0
observe: 15
term: 0
forced_term: 0
query: 0
information_gain: 0.870
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 15
Current state
State at Turn 15

🔄 Turn 16

💬 Assistant Action
Actions: [Term()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -4,
      4
    ],
    "facing": "east"
  },
  "red door": {
    "position": [
      -5,
      0
    ]
  },
  "airplane": {
    "position": [
      -10,
      3
    ],
    "facing": "west"
  },
  "backpack": {
    "position": [
      -10,
      1
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -7,
      -2
    ],
    "facing": "north"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -4,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -7
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.883
facing: 1
pos: 0.842
overall: 0.908
Global (Full):
dir: 0.883
facing: 1
pos: 0.842
overall: 0.908
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.561
is_action_fail: False
step: 16
action_counts:
move: 5
rotate: 11
return: 0
observe: 15
term: 1
forced_term: 0
query: 0
information_gain: 0.870
reward: -0.100
is_done: True
is_valid_action: True
Previous state
State before Turn 16
Current state
State at Turn 16

🧭 False Belief Exploration

🔄 FB Turn 17

💬 Assistant Action
Actions: [Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.848
facing: 1
pos: 0.888
overall: 0.912
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 1
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['scooter']
Current state
State at Turn 1

🔄 FB Turn 18

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.803
facing: 1
pos: 0.872
overall: 0.892
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 2
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 FB Turn 19

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.864
facing: 0.875
pos: 0.842
overall: 0.860
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 3
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['brown door', 'plant']
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 FB Turn 20

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: airplane:
dir: None
pos: 0.831
facing: None
overall: None
Retention: airplane:
dir: None
pos: 0.396
facing: None
overall: None
Unchanged (all):
dir: 0.803
facing: 0.375
pos: 0.827
overall: 0.668
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): ['airplane']
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: ['airplane']
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 4
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['airplane']
newly_observed_unchanged_objects: ['red door', 'truck']
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 FB Turn 21

💬 Assistant Action
Actions: [JumpTo(red door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: laptop:
dir: None
pos: None
facing: 1
overall: None
Retention: laptop:
dir: None
pos: None
facing: 0
overall: None
Unchanged (all):
dir: 0.621
facing: 0.500
pos: 0.750
overall: 0.624
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): ['laptop']
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: ['laptop']
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 5
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['laptop']
newly_observed_unchanged_objects: ['backpack']
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 FB Turn 22

💬 Assistant Action
Actions: [JumpTo(backpack), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.833
facing: 0.500
pos: 0.850
overall: 0.728
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 6
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 FB Turn 23

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.682
facing: 0.500
pos: 0.704
overall: 0.629
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 7
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 FB Turn 24

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.848
facing: 1
pos: 0.842
overall: 0.897
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 8
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['shoppingcart']
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 FB Turn 25

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.788
facing: 0.875
pos: 0.693
overall: 0.785
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 9
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 9
Current state
State at Turn 9

🔄 FB Turn 26

💬 Assistant Action
Actions: [Rotate(-90), JumpTo(red door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.758
facing: 1
pos: 0.821
overall: 0.859
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 10
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 10
Current state
State at Turn 10

🔄 FB Turn 27

💬 Assistant Action
Actions: [JumpTo(brown door), Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: television:
dir: None
pos: None
facing: 1
overall: None
Retention: television:
dir: None
pos: None
facing: 0
overall: None
Changed: teddybear:
dir: None
pos: 0.831
facing: None
overall: None
Retention: teddybear:
dir: None
pos: 0.305
facing: None
overall: None
Unchanged (all):
dir: 0.697
facing: 1
pos: 0.740
overall: 0.812
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): ['teddybear', 'television']
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: ['teddybear', 'television']
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 11
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['television', 'teddybear']
newly_observed_unchanged_objects: ['cap', 'toilet', 'green chair']
Previous state
State before Turn 11
Current state
State at Turn 11

🔄 FB Turn 28

💬 Assistant Action
Actions: [Term(changes="airplane: position, teddybear: position, laptop: orientation, television: orientation")]
📈 Turn Metrics
reward: 1
is_done: True
is_valid_action: True
success: 1
🧭 False Belief Info
step: 12
correctly_identified_changes: 1
f1_overall: 1
f1_position: 1
f1_facing: 1
action_cost: 11
action_cost_after_seen: 0
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: [{'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}, {'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}]
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 12
Current state
State at Turn 12

📊 Evaluation (default)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: default
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: default
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [11.0, 1.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: default
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.926
threshold: 0.900
score: 0.926
evaluation_mode: default
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.917
threshold: 0.900
score: 0.917
evaluation_mode: default
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.896
threshold: 0.900
score: 0.896
evaluation_mode: default
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotEvaluationTask

📊 Task: RotDualEvaluationTask

Question 1 (ID: 89475accf17d4665)

✅ Evaluation Results
id: 89475accf17d4665
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: shoppingcart, laptop, green chair Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: RotDualEvaluationTask

Question 2 (ID: 058612f0c21d8b04)

✅ Evaluation Results
id: 058612f0c21d8b04
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: truck, green chair, plant, scooter Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotDualEvaluationTask

Question 3 (ID: e44020cfb70d49b0)

✅ Evaluation Results
id: e44020cfb70d49b0
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: truck, green chair, plant Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotDualEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.690
raw_score: 0.690
score: 0.690
evaluation_mode: default
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.819
raw_score: 0.819
score: 0.819
evaluation_mode: default
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: default
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (prompt_cogmap)

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [11.0, 1.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.879
threshold: 0.900
score: 0.879
evaluation_mode: prompt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.700
threshold: 0.900
score: 0.700
evaluation_mode: prompt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.852
threshold: 0.900
score: 0.852
evaluation_mode: prompt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.831
raw_score: 0.831
score: 0.831
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.819
raw_score: 0.819
score: 0.819
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Evaluation (use_gt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [11.0, 1.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.819
raw_score: 0.819
score: 0.819
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_model_cogmap)

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [11.0, 1.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.939
threshold: 0.900
score: 0.939
evaluation_mode: use_model_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.706
threshold: 0.900
score: 0.706
evaluation_mode: use_model_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.667
threshold: 0.900
score: 0.667
evaluation_mode: use_model_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.831
raw_score: 0.831
score: 0.831
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.819
raw_score: 0.819
score: 0.819
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q3: PovEvaluationTask