Model: gpt-5.2

sample_run02

Select Configuration:

📊 Sample Metrics

🔍 Exploration

last_node_coverage: 1
last_edge_coverage: 0.463
n_exploration_steps: 9
action_counts:
move: 2
rotate: 5
return: 0
observe: 8
term: 1
forced_term: 0
query: 0
action_cost: 8
final_information_gain: 0.765
action_fail_ratio: 0
valid_action_ratio: 1
false_belief_steps: 15
false_belief_f1: 0.750
false_belief_f1_position: 0.800
false_belief_f1_facing: 0.667
false_belief_action_cost: 14
false_belief_action_cost_after_seen: None

✅ Evaluation

overall:
n_total: 27
total_score: 20.530
avg_accuracy: 0.760
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
PovEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 2.528
avg_accuracy: 0.843
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2LocationTextEvaluationTask:
n_total: 3
task_score: 1.501
avg_accuracy: 0.500

✅ Evaluation (prompt_cogmap)

overall:
n_total: 27
total_score: 19.872
avg_accuracy: 0.736
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
PovEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 2.490
avg_accuracy: 0.830
RotEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Location2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.382
avg_accuracy: 0.794

✅ Evaluation (use_gt_cogmap)

overall:
n_total: 27
total_score: 25.758
avg_accuracy: 0.954
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
PovEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.758
avg_accuracy: 0.919

✅ Evaluation (use_model_cogmap)

overall:
n_total: 27
total_score: 17.362
avg_accuracy: 0.643
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
PovEvaluationTask:
n_total: 3
task_score: 0.500
avg_accuracy: 0.167
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 2.020
avg_accuracy: 0.673
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
View2LocationTextEvaluationTask:
n_total: 3
task_score: 1.842
avg_accuracy: 0.614

🧠 Cognitive Map

exploration:
error:
local_vs_gt_local_avg:
dir: 0.867
facing: 1
pos: 0.851
overall: 0.906
global_vs_gt_global_avg:
dir: 0.814
facing: 0.990
pos: 0.881
overall: 0.895
agent_vs_gt_agent_avg:
dir: 0.889
facing: 1
pos: 0.954
overall: 0.948
newly_observed_vs_gt_local_avg:
dir: 0.825
facing: 1
pos: 0.874
overall: 0.900
correctness:
last_global_vs_gt_full:
dir: 0.592
facing: 1
pos: 0.702
overall: 0.765
consistency:
local_vs_global_avg:
dir: 0.871
facing: 0.952
pos: 0.864
overall: 0.896
position_update_avg: 0.653
facing_update_avg: 1
position_stability_avg: 0.653
facing_stability_avg: 1
fog_probe:
f1_avg: 0.522
precision_avg: 0.512
recall_avg: 0.583
cogmap_fb:
metrics:
changed:
dir: None
pos: 1
facing: 0
overall: None
retention:
dir: None
pos: 0.370
facing: 0
overall: None
unchanged:
dir: 0.679
facing: 0.758
pos: 0.725
overall: 0.721
inertia: None
inertia_list: []
unchanged_retention:
dir: None
pos: 0.805
facing: 0.750
overall: None
unchanged_retention_minus_retention:
pos: 0.789
facing: 1
unchanged_exploration:
dir: 0.564
facing: 1
pos: 0.710
overall: 0.758

🧭 False Belief CogMap

inertia: None
changed:
dir: None
pos: 1
facing: 0
overall: None
retention:
dir: None
pos: 0.370
facing: 0
overall: None
unchanged:
dir: 0.679
facing: 0.758
pos: 0.725
overall: 0.721
unchanged_retention:
dir: None
pos: 0.805
facing: 0.750
overall: None
unchanged_retention_minus_retention:
pos: 0.789
facing: 1
unchanged_exploration:
dir: 0.564
facing: 1
pos: 0.710
overall: 0.758

📊 Performance Charts

Cognitive Map (Update)
Global Update Metrics
Cognitive Map (Full)
Global Full Metrics
Cognitive Map (Self-Tracking)
Global Self-Tracking Metrics
FB CogMap (Unchanged)
False Belief CogMap Unchanged per Turn
Fog Probe F1
Fog Probe F1 per Turn
Fog Probe Precision
Fog Probe Precision per Turn
Fog Probe Recall
Fog Probe Recall per Turn
Position Update
Position Update per Turn
Facing Update
Facing Update per Turn
Position Stability
Position Stability per Turn
Facing Stability
Facing Stability per Turn

🌍 Exploration Phase

🔄 Turn 1

💬 Assistant Action
Actions: [Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -3,
      5
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green door": {
      "position": [
        1,
        3
      ]
    },
    "blue door": {
      "position": [
        -3,
        6
      ]
    }
  }
}
🎯 Ground Truth
{
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green door": {
      "position": [
        1,
        3
      ]
    },
    "blue door": {
      "position": [
        -3,
        6
      ]
    }
  }
}
🎯 Ground Truth
{
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
#################
#......##########
#......##########
#......##########
#......##########
#......##########
#......##########
#####+####......#
###...F..#......#
###......+......#
###...C.D#......#
###.B....#......#
###....E*#......#
###A.....########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, E
🎯 Ground Truth: B, A, E
🧠 Cognitive Map Metrics
Global:
dir: 1
facing: 1
pos: 1
overall: 1
Global (Full):
dir: 0.050
facing: 0.091
pos: 0.200
overall: 0.114
Local:
dir: 1
facing: 1
pos: 0.912
overall: 0.971
Local (Newly):
dir: 1
facing: 1
pos: 0.912
overall: 0.971
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 1
action_counts:
move: 0
rotate: 0
return: 0
observe: 1
term: 0
forced_term: 0
query: 0
information_gain: 0.113
reward: -0.100
is_done: False
is_valid_action: True
Current state
State at Turn 1

🔄 Turn 2

💬 Assistant Action
Actions: [JumpTo(green door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -3,
      4
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
#################
#......##########
#......##########
#......##########
#......##########
#......##########
#......##########
#####+####HK....#
###.....G#B.....#
###......*..A.F.#
###.....E#......#
###.D..J.#.....I#
###....L.#......#
###.....C########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, B, C, D, E, F, G, H, I, J, K, L
🎯 Ground Truth: L, D, C, F, I, A
🧠 Cognitive Map Metrics
Global:
dir: 0.667
facing: 1
pos: 0.927
overall: 0.865
Global (Full):
dir: 0.033
facing: 0.091
pos: 0.185
overall: 0.103
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 2
action_counts:
move: 1
rotate: 0
return: 0
observe: 2
term: 0
forced_term: 0
query: 0
information_gain: 0.113
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 Turn 3

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -2,
      4
    ]
  },
  "table": {
    "position": [
      6,
      3
    ]
  },
  "bike": {
    "position": [
      6,
      4
    ],
    "facing": "south"
  },
  "chair": {
    "position": [
      4,
      4
    ],
    "facing": "west"
  },
  "truck": {
    "position": [
      4,
      2
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "bike": {
      "position": [
        -1,
        4
      ],
      "facing": "+x"
    },
    "truck": {
      "position": [
        1,
        3
      ],
      "facing": "-x"
    },
    "chair": {
      "position": [
        -1,
        2
      ],
      "facing": "-y"
    },
    "table": {
      "position": [
        0,
        4
      ]
    }
  }
}
🎯 Ground Truth
{
  "bike": {
    "position": [
      -2,
      5
    ],
    "facing": "south"
  },
  "chair": {
    "position": [
      -2,
      3
    ],
    "facing": "west"
  },
  "truck": {
    "position": [
      2,
      3
    ],
    "facing": "north"
  },
  "table": {
    "position": [
      0,
      5
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "bike": {
      "position": [
        -1,
        4
      ],
      "facing": "+x"
    },
    "truck": {
      "position": [
        1,
        3
      ],
      "facing": "-x"
    },
    "chair": {
      "position": [
        -1,
        2
      ],
      "facing": "-y"
    },
    "table": {
      "position": [
        0,
        4
      ]
    }
  }
}
🎯 Ground Truth
{
  "bike": {
    "position": [
      -2,
      5
    ],
    "facing": "south"
  },
  "chair": {
    "position": [
      -2,
      3
    ],
    "facing": "west"
  },
  "truck": {
    "position": [
      2,
      3
    ],
    "facing": "north"
  },
  "table": {
    "position": [
      0,
      5
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
#################
#......##########
#......##########
#......##########
#......##########
#......##########
#......##########
#####+####......#
###......#.L....#
###.....K*......#
###H..C.F#......#
###...D..#BJ....#
###.A....#IG..E.#
###......########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, C, D, F, H
🎯 Ground Truth: A, D, H, G, I, B
🧠 Cognitive Map Metrics
Global:
dir: 0.714
facing: 1
pos: 0.896
overall: 0.870
Global (Full):
dir: 0.167
facing: 0.364
pos: 0.418
overall: 0.316
Local:
dir: 0.800
facing: 1
pos: 0.852
overall: 0.884
Local (Newly):
dir: 0.800
facing: 1
pos: 0.852
overall: 0.884
Fog Probe:
precision: 0.600
recall: 0.500
overall: 0.545
📈 Turn Metrics
node_coverage: 0.429
edge_coverage: 0.146
is_action_fail: False
step: 3
action_counts:
move: 1
rotate: 1
return: 0
observe: 3
term: 0
forced_term: 0
query: 0
information_gain: 0.384
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 Turn 4

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "west"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -4,
      6
    ]
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ]
  },
  "laptop": {
    "position": [
      -4,
      0
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -4,
      2
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      1,
      3
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "laptop": {
      "position": [
        -3,
        5
      ],
      "facing": "-x"
    },
    "pan": {
      "position": [
        -2,
        3
      ],
      "facing": "-x"
    },
    "teddybear": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    },
    "desklamp": {
      "position": [
        1,
        5
      ],
      "facing": "+x"
    },
    "blue door": {
      "position": [
        3,
        5
      ]
    }
  }
}
🎯 Ground Truth
{
  "pan": {
    "position": [
      -2,
      3
    ],
    "facing": "south"
  },
  "laptop": {
    "position": [
      -4,
      5
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -2,
      6
    ],
    "facing": "north"
  },
  "blue door": {
    "position": [
      2,
      4
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      1,
      6
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "laptop": {
      "position": [
        -3,
        5
      ],
      "facing": "-x"
    },
    "pan": {
      "position": [
        -2,
        3
      ],
      "facing": "-x"
    },
    "teddybear": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    },
    "desklamp": {
      "position": [
        1,
        5
      ],
      "facing": "+x"
    },
    "blue door": {
      "position": [
        3,
        5
      ]
    }
  }
}
🎯 Ground Truth
{
  "pan": {
    "position": [
      -2,
      3
    ],
    "facing": "south"
  },
  "laptop": {
    "position": [
      -4,
      5
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -2,
      6
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      1,
      6
    ],
    "facing": "north"
  }
}
🗺️ Symbolic Fog Map
#################
#......##########
#......##########
#......##########
#......##########
#......##########
#......##########
#####+####......#
###...D..#.....K#
###......*......#
###......#...B..#
###...F..#H.I...#
###L...E.#JC....#
###....GA########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: (none)
🎯 Ground Truth: A, E, G, H, C, J
🧠 Cognitive Map Metrics
Global:
dir: 0.909
facing: 1
pos: 0.916
overall: 0.942
Global (Full):
dir: 0.500
facing: 0.727
pos: 0.672
overall: 0.633
Local:
dir: 0.733
facing: 1
pos: 0.867
overall: 0.867
Local (Newly):
dir: 0.800
facing: 1
pos: 0.878
overall: 0.893
Fog Probe:
precision: 0
recall: 0
overall: 0
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.268
is_action_fail: False
step: 4
action_counts:
move: 1
rotate: 2
return: 0
observe: 4
term: 0
forced_term: 0
query: 0
information_gain: 0.587
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 Turn 5

💬 Assistant Action
Actions: [JumpTo(blue door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -4,
      6
    ],
    "facing": "west"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -4,
      6
    ]
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ]
  },
  "laptop": {
    "position": [
      -3,
      -1
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -1,
      1
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -4,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -6,
      4
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "desklamp": {
      "position": [
        -2,
        3
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "desklamp": {
    "position": [
      -1,
      2
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "desklamp": {
      "position": [
        -2,
        3
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
#################
#......##########
#J.....##########
#.A....##########
#....D.##########
#......##########
#.KHP..##########
#####*####......#
###......#......#
###.N....+......#
###..F...#.I....#
###.....B#E.....#
###......#CG.M.Q#
###...LRO########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R
🤖 Predicted: C, E, G, I, M, Q
🎯 Ground Truth: L, R, O, E, G, C, J, A, D
🧠 Cognitive Map Metrics
Global:
dir: 0.894
facing: 1
pos: 0.895
overall: 0.930
Global (Full):
dir: 0.492
facing: 0.727
pos: 0.656
overall: 0.625
Local:
dir: 1
facing: 1
pos: 0.832
overall: 0.944
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 0.333
overall: 0.400
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.293
is_action_fail: False
step: 5
action_counts:
move: 2
rotate: 2
return: 0
observe: 5
term: 0
forced_term: 0
query: 0
information_gain: 0.597
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 Turn 6

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -3,
      5
    ]
  },
  "table": {
    "position": [
      5,
      3
    ]
  },
  "bike": {
    "position": [
      5,
      4
    ],
    "facing": "south"
  },
  "chair": {
    "position": [
      3,
      4
    ],
    "facing": "west"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -3,
      0
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -1,
      1
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -4,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -6,
      4
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green door": {
      "position": [
        3,
        5
      ]
    }
  }
}
🎯 Ground Truth
{
  "green door": {
    "position": [
      2,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green door": {
      "position": [
        3,
        5
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
#################
#.....B##########
#..F...##########
#.....O##########
#.H....##########
#......##########
#..CR..##########
#####*####......#
###......#......#
###A.....+..EL..#
###I.....#..M...#
###......#J.....#
###....Q.#PN....#
###G..KD.########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R
🤖 Predicted: E, E, J, L, M, N, P
🎯 Ground Truth: D, Q, K, N, J, P, O, F, B
🧠 Cognitive Map Metrics
Global:
dir: 0.864
facing: 1
pos: 0.883
overall: 0.916
Global (Full):
dir: 0.475
facing: 0.727
pos: 0.648
overall: 0.617
Local:
dir: 1
facing: 1
pos: 0.832
overall: 0.944
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 0.333
overall: 0.400
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.293
is_action_fail: False
step: 6
action_counts:
move: 2
rotate: 3
return: 0
observe: 6
term: 0
forced_term: 0
query: 0
information_gain: 0.597
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 Turn 7

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "south"
  },
  "green door": {
    "position": [
      1,
      3
    ]
  },
  "blue door": {
    "position": [
      -3,
      5
    ]
  },
  "bike": {
    "position": [
      5,
      4
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      3,
      1
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      4
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      5,
      3
    ]
  },
  "laptop": {
    "position": [
      -4,
      0
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -6,
      2
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "laptop": {
      "position": [
        2,
        6
      ],
      "facing": "+y"
    },
    "pan": {
      "position": [
        -2,
        6
      ],
      "facing": "+y"
    },
    "teddybear": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "pan": {
    "position": [
      -1,
      4
    ],
    "facing": "south"
  },
  "laptop": {
    "position": [
      1,
      6
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      2,
      4
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "laptop": {
      "position": [
        2,
        6
      ],
      "facing": "+y"
    },
    "pan": {
      "position": [
        -2,
        6
      ],
      "facing": "+y"
    },
    "teddybear": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
#################
#......##########
#D.F...##########
#....C.##########
#A.....##########
#..H...##########
#..K...##########
#####*####.....I#
###......#......#
###......+.....E#
###......#......#
###......#L....B#
###......#GJ....#
###......########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: B, E, G, I, J, L
🎯 Ground Truth: J, G, L, F, D, C
🧠 Cognitive Map Metrics
Global:
dir: 0.955
facing: 1
pos: 0.895
overall: 0.950
Global (Full):
dir: 0.525
facing: 0.727
pos: 0.656
overall: 0.636
Local:
dir: 0.833
facing: 1
pos: 0.808
overall: 0.880
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 0.500
overall: 0.500
📈 Turn Metrics
node_coverage: 0.714
edge_coverage: 0.366
is_action_fail: False
step: 7
action_counts:
move: 2
rotate: 4
return: 0
observe: 7
term: 0
forced_term: 0
query: 0
information_gain: 0.610
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 Turn 8

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      5
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      2,
      3
    ]
  },
  "blue door": {
    "position": [
      -2,
      5
    ]
  },
  "laptop": {
    "position": [
      -1,
      0
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      0,
      1
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -2,
      2
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "table": {
    "position": [
      6,
      3
    ]
  },
  "bike": {
    "position": [
      6,
      4
    ],
    "facing": "south"
  },
  "chair": {
    "position": [
      5,
      5
    ],
    "facing": "west"
  },
  "truck": {
    "position": [
      5,
      1
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      -1,
      10
    ],
    "facing": "south"
  },
  "lego man": {
    "position": [
      -6,
      10
    ],
    "facing": "north"
  },
  "candle": {
    "position": [
      -6,
      11
    ]
  },
  "fire extinguisher": {
    "position": [
      0,
      8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        1,
        6
      ],
      "facing": "+x"
    },
    "lego man": {
      "position": [
        -2,
        5
      ],
      "facing": "+y"
    },
    "candle": {
      "position": [
        -2,
        7
      ]
    },
    "fire extinguisher": {
      "position": [
        2,
        3
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
{
  "lego man": {
    "position": [
      -3,
      4
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      1,
      6
    ],
    "facing": "east"
  },
  "candle": {
    "position": [
      -3,
      6
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      1,
      2
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        1,
        6
      ],
      "facing": "+x"
    },
    "lego man": {
      "position": [
        -2,
        5
      ],
      "facing": "+y"
    },
    "candle": {
      "position": [
        -2,
        7
      ]
    },
    "fire extinguisher": {
      "position": [
        2,
        3
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
{
  "lego man": {
    "position": [
      -3,
      4
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      1,
      6
    ],
    "facing": "east"
  },
  "candle": {
    "position": [
      -3,
      6
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      1,
      2
    ],
    "facing": "north"
  }
}
🗺️ Symbolic Fog Map
#################
#......##########
#......##########
#......##########
#......##########
#......##########
#......##########
#####*####......#
###......#CA....#
###......+......#
###......#.B....#
###......#E.....#
###......#FD....#
###......########
#################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: E, D, F
🧠 Cognitive Map Metrics
Global:
dir: 0.733
facing: 0.909
pos: 0.812
overall: 0.818
Global (Full):
dir: 0.733
facing: 0.909
pos: 0.812
overall: 0.818
Local:
dir: 0.700
facing: 1
pos: 0.852
overall: 0.851
Local (Newly):
dir: 0.700
facing: 1
pos: 0.852
overall: 0.851
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.463
is_action_fail: False
step: 8
action_counts:
move: 2
rotate: 5
return: 0
observe: 8
term: 0
forced_term: 0
query: 0
information_gain: 0.765
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 Turn 9

💬 Assistant Action
Actions: [Term()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -3,
      6
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      2,
      3
    ]
  },
  "blue door": {
    "position": [
      -3,
      6
    ]
  },
  "bike": {
    "position": [
      6,
      4
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      5,
      2
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      5,
      4
    ],
    "facing": "west"
  },
  "table": {
    "position": [
      8,
      4
    ]
  },
  "laptop": {
    "position": [
      -2,
      5
    ],
    "facing": "south"
  },
  "pan": {
    "position": [
      -1,
      4
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -4,
      8
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "lego man": {
    "position": [
      -5,
      11
    ],
    "facing": "north"
  },
  "candle": {
    "position": [
      -5,
      12
    ]
  },
  "fire extinguisher": {
    "position": [
      0,
      8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "laptop": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      6,
      5
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      -2,
      11
    ],
    "facing": "east"
  },
  "pan": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      4,
      1
    ],
    "facing": "north"
  },
  "lego man": {
    "position": [
      -6,
      9
    ],
    "facing": "north"
  },
  "teddybear": {
    "position": [
      -5,
      1
    ],
    "facing": "north"
  },
  "desklamp": {
    "position": [
      -5,
      4
    ],
    "facing": "north"
  },
  "chair": {
    "position": [
      4,
      5
    ],
    "facing": "west"
  },
  "candle": {
    "position": [
      -6,
      11
    ],
    "facing": "east"
  },
  "table": {
    "position": [
      6,
      3
    ],
    "facing": "east"
  },
  "fire extinguisher": {
    "position": [
      -2,
      7
    ],
    "facing": "north"
  },
  "green door": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "blue door": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      5
    ],
    "facing": "north"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.592
facing: 1
pos: 0.702
overall: 0.765
Global (Full):
dir: 0.592
facing: 1
pos: 0.702
overall: 0.765
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 1
edge_coverage: 0.463
is_action_fail: False
step: 9
action_counts:
move: 2
rotate: 5
return: 0
observe: 8
term: 1
forced_term: 0
query: 0
information_gain: 0.765
reward: -0.100
is_done: True
is_valid_action: True
Previous state
State before Turn 9
Current state
State at Turn 9

🧭 False Belief Exploration

🔄 FB Turn 10

💬 Assistant Action
Actions: [JumpTo(green door), Rotate(-90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: fire extinguisher:
dir: None
pos: 1
facing: None
overall: None
Retention: fire extinguisher:
dir: None
pos: 0.370
facing: None
overall: None
Changed: desklamp:
dir: None
pos: None
facing: 0
overall: None
Retention: desklamp:
dir: None
pos: None
facing: 0
overall: None
Unchanged (all):
dir: 0.621
facing: 0.571
pos: 0.728
overall: 0.640
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): ['desklamp', 'fire extinguisher']
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: ['desklamp', 'fire extinguisher']
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 1
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['fire extinguisher', 'desklamp']
newly_observed_unchanged_objects: ['laptop', 'pan', 'blue door']
Current state
State at Turn 1

🔄 FB Turn 11

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.894
facing: 1
pos: 0.889
overall: 0.928
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 2
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 FB Turn 12

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.758
facing: 0.286
pos: 0.749
overall: 0.597
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 3
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 FB Turn 13

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.667
facing: 0.857
pos: 0.739
overall: 0.754
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 4
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 FB Turn 14

💬 Assistant Action
Actions: [JumpTo(laptop), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.848
facing: 1
pos: 0.803
overall: 0.884
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 5
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 FB Turn 15

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
(none)
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: []
🧭 False Belief Info
step: 6
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 FB Turn 16

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.848
facing: 0.857
pos: 0.835
overall: 0.847
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 7
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['green door']
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 FB Turn 17

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.576
facing: 0.571
pos: 0.711
overall: 0.619
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 8
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 FB Turn 18

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.667
facing: 1
pos: 0.607
overall: 0.758
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 9
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 9
Current state
State at Turn 9

🔄 FB Turn 19

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.742
facing: 1
pos: 0.815
overall: 0.853
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 10
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 10
Current state
State at Turn 10

🔄 FB Turn 20

💬 Assistant Action
Actions: [JumpTo(green door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.742
facing: 0.714
pos: 0.635
overall: 0.697
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 11
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['truck', 'chair', 'bike', 'table']
Previous state
State before Turn 11
Current state
State at Turn 11

🔄 FB Turn 21

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.379
facing: 1
pos: 0.568
overall: 0.649
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 12
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 12
Current state
State at Turn 12

🔄 FB Turn 22

💬 Assistant Action
Actions: [JumpTo(blue door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.682
facing: 0.857
pos: 0.751
overall: 0.763
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 13
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 13
Current state
State at Turn 13

🔄 FB Turn 23

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.409
facing: 0.143
pos: 0.598
overall: 0.383
🧾 False Belief Object Sets
all_objects: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
all_changed_objects: ['airplane', 'desklamp', 'fire extinguisher', 'teddybear']
newly_observed_changed (this turn): []
unchanged_objects: ['bike', 'blue door', 'candle', 'chair', 'green door', 'laptop', 'lego man', 'pan', 'table', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'bike', 'blue door', 'candle', 'chair', 'desklamp', 'fire extinguisher', 'green door', 'laptop', 'lego man', 'pan', 'table', 'teddybear', 'truck']
🧭 False Belief Info
step: 14
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 14
Current state
State at Turn 14

🔄 FB Turn 24

💬 Assistant Action
Actions: [Term(changes="fire extinguisher: position, desklamp: orientation, teddybear: position, pan: position")]
📈 Turn Metrics
reward: 0.750
is_done: True
is_valid_action: True
success: 0.750
🧭 False Belief Info
step: 15
correctly_identified_changes: 0.750
f1_overall: 0.750
f1_position: 0.800
f1_facing: 0.667
action_cost: 14
action_cost_after_seen: None
ground_truth_changes: [{'name': 'airplane', 'ori': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'fire extinguisher', 'pos': True}]
reported_changes: [{'name': 'fire extinguisher', 'pos': True}, {'name': 'desklamp', 'ori': True}, {'name': 'teddybear', 'pos': True}, {'name': 'pan', 'pos': True}]
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 15
Current state
State at Turn 15

📊 Evaluation (default)

📊 Task: DirectionEvaluationTask

Question 1 (ID: ca87148432a7d552)

✅ Evaluation Results
id: ca87148432a7d552
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: e031d760b96a5da9)

✅ Evaluation Results
id: e031d760b96a5da9
question: You return to your starting position and face north. From a Top-Down map, describe where chair is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north east, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: f91d7ef70302b179)

✅ Evaluation Results
id: f91d7ef70302b179
question: You return to your starting position and face north. From a Top-Down map, describe where lego man is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: b39725205f4d5931)

✅ Evaluation Results
id: b39725205f4d5931
question: Now you jump to teddybear's direction, facing its direction. Describe where desklamp is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ddaba1a0c4c8aaed)

✅ Evaluation Results
id: ddaba1a0c4c8aaed
question: Now you jump to pan's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 583f1b341e5291a0)

✅ Evaluation Results
id: 583f1b341e5291a0
question: Now you jump to bike's direction, facing its direction. Describe where table is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, near
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: 38b08b9cd49edf9d)

✅ Evaluation Results
id: 38b08b9cd49edf9d
question: Now you jump to an object's position, facing its direction. You observe that desklamp is front, mid distance, facing forward; blue door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: teddybear
final_pos: [3, 3]
final_ori: [0, 1]
final_observation: [{'name': 'desklamp', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'blue door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 1
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 593eaa3f0e5ee139)

✅ Evaluation Results
id: 593eaa3f0e5ee139
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; chair is front, mid distance, facing left; table is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [12, 3]
final_ori: [0, 1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'table', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 2
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 8478901165ea117a)

✅ Evaluation Results
id: 8478901165ea117a
question: Now you jump to an object's position, facing its direction. You observe that airplane is front, mid distance, facing right; candle is front-left, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: fire extinguisher
final_pos: [6, 9]
final_ori: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 3
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 21808bda9b228db0)

✅ Evaluation Results
id: 21808bda9b228db0
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, mid distance. 3. Rotate(-180) 4. Jump to the object at front-left, mid distance. 5. Rotate(-180) After executing the actions, what is the ego relation of teddybear relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: ab43fa08726d1772)

✅ Evaluation Results
id: ab43fa08726d1772
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-slight-right, slightly far. 3. Rotate(90) 4. Jump to the object at front-right, slightly far. After executing the actions, what is the ego relation of fire extinguisher relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: 604bedeabbf32688)

✅ Evaluation Results
id: 604bedeabbf32688
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, slightly far. 3. Rotate(-90) 4. Jump to the object at front, mid distance. 5. Rotate(-90) After executing the actions, what is the ego relation of green door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 1a5402f686fdbe8e)

✅ Evaluation Results
id: 1a5402f686fdbe8e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: candle is at front, near What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [2, 11]
final_ori: [0, 1]
room_id: 3
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'blue door'], ['jumpto', 'lego man']]
final_observation: [{'name': 'candle', 'direction': 'front', 'distance': 'near', 'orientation': None}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [2.0, 11.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: default
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 0240108a1a776391)

✅ Evaluation Results
id: 0240108a1a776391
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: bike is at front, near, facing backward; chair is at front-left, mid distance, facing left What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 5]
final_ori: [0, 1]
room_id: 2
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'green door'], ['rotate', 90], ['jumpto', 'table'], ['rotate', -90]]
final_observation: [{'name': 'bike', 'direction': 'front', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [14.0, 5.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: default
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: fe579174d12a0b9e)

✅ Evaluation Results
id: fe579174d12a0b9e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: green door is at front-left, mid distance, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [6, 3]
final_ori: [1, 0]
room_id: 1
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['rotate', -90], ['jumpto', 'pan'], ['rotate', 180]]
final_observation: [{'name': 'green door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: False
final_pos: [5.0, 7.0]
final_ori: [0, 1]
visible_match: False
score: 0
evaluation_mode: default
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 046899a176fbe951)

✅ Evaluation Results
id: 046899a176fbe951
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, laptop, candle, table, fire extinguisher. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-2, 11], [-4, -1], [-6, 11], [6, 3], [-2, 7]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.864
threshold: 0.900
score: 0.864
evaluation_mode: default
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 64c2cfa4dfb804b2)

✅ Evaluation Results
id: 64c2cfa4dfb804b2
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: chair, pan, lego man. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[4, 5], [-2, 1], [-6, 9]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.853
threshold: 0.900
score: 0.853
evaluation_mode: default
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: bf689311469baa8a)

✅ Evaluation Results
id: bf689311469baa8a
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: lego man, pan, bike, fire extinguisher, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-6, 9], [-2, 1], [6, 5], [-2, 7], [-2, 11]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.811
threshold: 0.900
score: 0.811
evaluation_mode: default
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 79135364fb4b164f)

✅ Evaluation Results
id: 79135364fb4b164f
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, desklamp, laptop. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['airplane', 'desklamp', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 75467a0fbc94e6b7)

✅ Evaluation Results
id: 75467a0fbc94e6b7
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning clockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: chair, laptop, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['chair', 'truck', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 456b022cad9cba9a)

✅ Evaluation Results
id: 456b022cad9cba9a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: bike, lego man, teddybear. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['lego man', 'teddybear', 'bike']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotEvaluationTask

📊 Task: RotDualEvaluationTask

Question 1 (ID: 63b9f1a78aaf3b24)

✅ Evaluation Results
id: 63b9f1a78aaf3b24
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: airplane, desklamp, laptop Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: RotDualEvaluationTask

Question 2 (ID: ea901f1db8ed2f4b)

✅ Evaluation Results
id: ea901f1db8ed2f4b
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: chair, truck, laptop Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: clockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotDualEvaluationTask

Question 3 (ID: 1546ca0f231b289d)

✅ Evaluation Results
id: 1546ca0f231b289d
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: lego man, teddybear, bike Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotDualEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 77fb7413d8ff5f85)

✅ Evaluation Results
id: 77fb7413d8ff5f85
question: Still treat your initial position as origin (0, 0) You move to (-3, 2) and face west. What is the egocentric relation of teddybear? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-left, mid distance
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 3399c355c7d0785f)

✅ Evaluation Results
id: 3399c355c7d0785f
question: Still treat your initial position as origin (0, 0) You move to (-1, 0) and face west. What is the egocentric relation of pan? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 1c9e744fd28c4e95)

✅ Evaluation Results
id: 1c9e744fd28c4e95
question: Treat the blue door as the new 'origin' (0, 0). You move to (0, 3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-right, mid distance
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 981cabb8e8f95e0e)

✅ Evaluation Results
id: 981cabb8e8f95e0e
question: You move to a new location and face west. You observe: teddybear is at front-left, mid distance, facing right; desklamp is at front-right, mid distance, facing right Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-3, 2]
final_pos: [5, 4]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'teddybear', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'desklamp', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing right'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.758
raw_score: 0.758
score: 0.758
evaluation_mode: default
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 56bb180ac8571782)

✅ Evaluation Results
id: 56bb180ac8571782
question: You move to a new location and face west. You observe: pan is at front-right, near, facing left; teddybear is at front-slight-right, slightly far, facing right; laptop is at front-slight-left, mid distance, facing left Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-1, 0]
final_pos: [7, 2]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'pan', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'teddybear', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front-slight-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.027
raw_score: 0.027
score: 0.027
evaluation_mode: default
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: d06f40c11fae70c2)

✅ Evaluation Results
id: d06f40c11fae70c2
question: You move to a new location and face north. You observe: airplane is at front-slight-right, mid distance, facing right; candle is at front-left, slightly far Treat the blue door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, 3]
final_pos: [5, 10]
final_ori: [0, 1]
room_id: 3
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-right', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.717
raw_score: 0.717
score: 0.717
evaluation_mode: default
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (prompt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: ca87148432a7d552)

✅ Evaluation Results
id: ca87148432a7d552
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: e031d760b96a5da9)

✅ Evaluation Results
id: e031d760b96a5da9
question: You return to your starting position and face north. From a Top-Down map, describe where chair is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north east, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: f91d7ef70302b179)

✅ Evaluation Results
id: f91d7ef70302b179
question: You return to your starting position and face north. From a Top-Down map, describe where lego man is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: b39725205f4d5931)

✅ Evaluation Results
id: b39725205f4d5931
question: Now you jump to teddybear's direction, facing its direction. Describe where desklamp is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ddaba1a0c4c8aaed)

✅ Evaluation Results
id: ddaba1a0c4c8aaed
question: Now you jump to pan's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 583f1b341e5291a0)

✅ Evaluation Results
id: 583f1b341e5291a0
question: Now you jump to bike's direction, facing its direction. Describe where table is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, near
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: 38b08b9cd49edf9d)

✅ Evaluation Results
id: 38b08b9cd49edf9d
question: Now you jump to an object's position, facing its direction. You observe that desklamp is front, mid distance, facing forward; blue door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: teddybear
final_pos: [3, 3]
final_ori: [0, 1]
final_observation: [{'name': 'desklamp', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'blue door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 1
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 593eaa3f0e5ee139)

✅ Evaluation Results
id: 593eaa3f0e5ee139
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; chair is front, mid distance, facing left; table is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [12, 3]
final_ori: [0, 1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'table', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 2
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 8478901165ea117a)

✅ Evaluation Results
id: 8478901165ea117a
question: Now you jump to an object's position, facing its direction. You observe that airplane is front, mid distance, facing right; candle is front-left, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: fire extinguisher
final_pos: [6, 9]
final_ori: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 3
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 21808bda9b228db0)

✅ Evaluation Results
id: 21808bda9b228db0
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, mid distance. 3. Rotate(-180) 4. Jump to the object at front-left, mid distance. 5. Rotate(-180) After executing the actions, what is the ego relation of teddybear relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 604bedeabbf32688)

✅ Evaluation Results
id: 604bedeabbf32688
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, slightly far. 3. Rotate(-90) 4. Jump to the object at front, mid distance. 5. Rotate(-90) After executing the actions, what is the ego relation of green door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ab43fa08726d1772)

✅ Evaluation Results
id: ab43fa08726d1772
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-slight-right, slightly far. 3. Rotate(90) 4. Jump to the object at front-right, slightly far. After executing the actions, what is the ego relation of fire extinguisher relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 1a5402f686fdbe8e)

✅ Evaluation Results
id: 1a5402f686fdbe8e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: candle is at front, near What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [2, 11]
final_ori: [0, 1]
room_id: 3
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'blue door'], ['jumpto', 'lego man']]
final_observation: [{'name': 'candle', 'direction': 'front', 'distance': 'near', 'orientation': None}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [2.0, 11.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 0240108a1a776391)

✅ Evaluation Results
id: 0240108a1a776391
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: bike is at front, near, facing backward; chair is at front-left, mid distance, facing left What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 5]
final_ori: [0, 1]
room_id: 2
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'green door'], ['rotate', 90], ['jumpto', 'table'], ['rotate', -90]]
final_observation: [{'name': 'bike', 'direction': 'front', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: False
final_pos: [14.0, 5.0]
final_ori: [0, -1]
visible_match: False
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: fe579174d12a0b9e)

✅ Evaluation Results
id: fe579174d12a0b9e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: green door is at front-left, mid distance, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [6, 3]
final_ori: [1, 0]
room_id: 1
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['rotate', -90], ['jumpto', 'pan'], ['rotate', 180]]
final_observation: [{'name': 'green door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [6.0, 3.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 046899a176fbe951)

✅ Evaluation Results
id: 046899a176fbe951
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, laptop, candle, table, fire extinguisher. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-2, 11], [-4, -1], [-6, 11], [6, 3], [-2, 7]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.810
threshold: 0.900
score: 0.810
evaluation_mode: prompt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 64c2cfa4dfb804b2)

✅ Evaluation Results
id: 64c2cfa4dfb804b2
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: chair, pan, lego man. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[4, 5], [-2, 1], [-6, 9]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.879
threshold: 0.900
score: 0.879
evaluation_mode: prompt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: bf689311469baa8a)

✅ Evaluation Results
id: bf689311469baa8a
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: lego man, pan, bike, fire extinguisher, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-6, 9], [-2, 1], [6, 5], [-2, 7], [-2, 11]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.802
threshold: 0.900
score: 0.802
evaluation_mode: prompt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 79135364fb4b164f)

✅ Evaluation Results
id: 79135364fb4b164f
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, desklamp, laptop. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['airplane', 'desklamp', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 75467a0fbc94e6b7)

✅ Evaluation Results
id: 75467a0fbc94e6b7
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning clockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: chair, laptop, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['chair', 'truck', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 456b022cad9cba9a)

✅ Evaluation Results
id: 456b022cad9cba9a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: bike, lego man, teddybear. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['lego man', 'teddybear', 'bike']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 77fb7413d8ff5f85)

✅ Evaluation Results
id: 77fb7413d8ff5f85
question: Still treat your initial position as origin (0, 0) You move to (-3, 2) and face west. What is the egocentric relation of teddybear? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-left, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 3399c355c7d0785f)

✅ Evaluation Results
id: 3399c355c7d0785f
question: Still treat your initial position as origin (0, 0) You move to (-1, 0) and face west. What is the egocentric relation of pan? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 1c9e744fd28c4e95)

✅ Evaluation Results
id: 1c9e744fd28c4e95
question: Treat the blue door as the new 'origin' (0, 0). You move to (0, 3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-right, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 981cabb8e8f95e0e)

✅ Evaluation Results
id: 981cabb8e8f95e0e
question: You move to a new location and face west. You observe: teddybear is at front-left, mid distance, facing right; desklamp is at front-right, mid distance, facing right Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-3, 2]
final_pos: [5, 4]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'teddybear', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'desklamp', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing right'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.758
raw_score: 0.758
score: 0.758
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 56bb180ac8571782)

✅ Evaluation Results
id: 56bb180ac8571782
question: You move to a new location and face west. You observe: pan is at front-right, near, facing left; teddybear is at front-slight-right, slightly far, facing right; laptop is at front-slight-left, mid distance, facing left Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-1, 0]
final_pos: [7, 2]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'pan', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'teddybear', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front-slight-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: d06f40c11fae70c2)

✅ Evaluation Results
id: d06f40c11fae70c2
question: You move to a new location and face north. You observe: airplane is at front-slight-right, mid distance, facing right; candle is at front-left, slightly far Treat the blue door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, 3]
final_pos: [5, 10]
final_ori: [0, 1]
room_id: 3
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-right', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.624
raw_score: 0.624
score: 0.624
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_gt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: ca87148432a7d552)

✅ Evaluation Results
id: ca87148432a7d552
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: e031d760b96a5da9)

✅ Evaluation Results
id: e031d760b96a5da9
question: You return to your starting position and face north. From a Top-Down map, describe where chair is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north east, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: f91d7ef70302b179)

✅ Evaluation Results
id: f91d7ef70302b179
question: You return to your starting position and face north. From a Top-Down map, describe where lego man is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: b39725205f4d5931)

✅ Evaluation Results
id: b39725205f4d5931
question: Now you jump to teddybear's direction, facing its direction. Describe where desklamp is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ddaba1a0c4c8aaed)

✅ Evaluation Results
id: ddaba1a0c4c8aaed
question: Now you jump to pan's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 583f1b341e5291a0)

✅ Evaluation Results
id: 583f1b341e5291a0
question: Now you jump to bike's direction, facing its direction. Describe where table is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, near
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: 38b08b9cd49edf9d)

✅ Evaluation Results
id: 38b08b9cd49edf9d
question: Now you jump to an object's position, facing its direction. You observe that desklamp is front, mid distance, facing forward; blue door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: teddybear
final_pos: [3, 3]
final_ori: [0, 1]
final_observation: [{'name': 'desklamp', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'blue door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 1
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 593eaa3f0e5ee139)

✅ Evaluation Results
id: 593eaa3f0e5ee139
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; chair is front, mid distance, facing left; table is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [12, 3]
final_ori: [0, 1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'table', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 2
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 8478901165ea117a)

✅ Evaluation Results
id: 8478901165ea117a
question: Now you jump to an object's position, facing its direction. You observe that airplane is front, mid distance, facing right; candle is front-left, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: fire extinguisher
final_pos: [6, 9]
final_ori: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 3
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 21808bda9b228db0)

✅ Evaluation Results
id: 21808bda9b228db0
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, mid distance. 3. Rotate(-180) 4. Jump to the object at front-left, mid distance. 5. Rotate(-180) After executing the actions, what is the ego relation of teddybear relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 604bedeabbf32688)

✅ Evaluation Results
id: 604bedeabbf32688
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, slightly far. 3. Rotate(-90) 4. Jump to the object at front, mid distance. 5. Rotate(-90) After executing the actions, what is the ego relation of green door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ab43fa08726d1772)

✅ Evaluation Results
id: ab43fa08726d1772
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-slight-right, slightly far. 3. Rotate(90) 4. Jump to the object at front-right, slightly far. After executing the actions, what is the ego relation of fire extinguisher relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 1a5402f686fdbe8e)

✅ Evaluation Results
id: 1a5402f686fdbe8e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: candle is at front, near What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [2, 11]
final_ori: [0, 1]
room_id: 3
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'blue door'], ['jumpto', 'lego man']]
final_observation: [{'name': 'candle', 'direction': 'front', 'distance': 'near', 'orientation': None}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [2.0, 11.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 0240108a1a776391)

✅ Evaluation Results
id: 0240108a1a776391
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: bike is at front, near, facing backward; chair is at front-left, mid distance, facing left What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 5]
final_ori: [0, 1]
room_id: 2
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'green door'], ['rotate', 90], ['jumpto', 'table'], ['rotate', -90]]
final_observation: [{'name': 'bike', 'direction': 'front', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
error: target_not_visible
score: 0
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: fe579174d12a0b9e)

✅ Evaluation Results
id: fe579174d12a0b9e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: green door is at front-left, mid distance, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [6, 3]
final_ori: [1, 0]
room_id: 1
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['rotate', -90], ['jumpto', 'pan'], ['rotate', 180]]
final_observation: [{'name': 'green door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [6.0, 3.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 046899a176fbe951)

✅ Evaluation Results
id: 046899a176fbe951
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, laptop, candle, table, fire extinguisher. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-2, 11], [-4, -1], [-6, 11], [6, 3], [-2, 7]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 64c2cfa4dfb804b2)

✅ Evaluation Results
id: 64c2cfa4dfb804b2
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: chair, pan, lego man. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[4, 5], [-2, 1], [-6, 9]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: bf689311469baa8a)

✅ Evaluation Results
id: bf689311469baa8a
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: lego man, pan, bike, fire extinguisher, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-6, 9], [-2, 1], [6, 5], [-2, 7], [-2, 11]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 79135364fb4b164f)

✅ Evaluation Results
id: 79135364fb4b164f
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, desklamp, laptop. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['airplane', 'desklamp', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 75467a0fbc94e6b7)

✅ Evaluation Results
id: 75467a0fbc94e6b7
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning clockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: chair, laptop, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['chair', 'truck', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 456b022cad9cba9a)

✅ Evaluation Results
id: 456b022cad9cba9a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: bike, lego man, teddybear. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['lego man', 'teddybear', 'bike']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 77fb7413d8ff5f85)

✅ Evaluation Results
id: 77fb7413d8ff5f85
question: Still treat your initial position as origin (0, 0) You move to (-3, 2) and face west. What is the egocentric relation of teddybear? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-left, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 3399c355c7d0785f)

✅ Evaluation Results
id: 3399c355c7d0785f
question: Still treat your initial position as origin (0, 0) You move to (-1, 0) and face west. What is the egocentric relation of pan? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 1c9e744fd28c4e95)

✅ Evaluation Results
id: 1c9e744fd28c4e95
question: Treat the blue door as the new 'origin' (0, 0). You move to (0, 3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-right, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 981cabb8e8f95e0e)

✅ Evaluation Results
id: 981cabb8e8f95e0e
question: You move to a new location and face west. You observe: teddybear is at front-left, mid distance, facing right; desklamp is at front-right, mid distance, facing right Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-3, 2]
final_pos: [5, 4]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'teddybear', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'desklamp', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing right'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.758
raw_score: 0.758
score: 0.758
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 56bb180ac8571782)

✅ Evaluation Results
id: 56bb180ac8571782
question: You move to a new location and face west. You observe: pan is at front-right, near, facing left; teddybear is at front-slight-right, slightly far, facing right; laptop is at front-slight-left, mid distance, facing left Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-1, 0]
final_pos: [7, 2]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'pan', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'teddybear', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front-slight-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: d06f40c11fae70c2)

✅ Evaluation Results
id: d06f40c11fae70c2
question: You move to a new location and face north. You observe: airplane is at front-slight-right, mid distance, facing right; candle is at front-left, slightly far Treat the blue door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, 3]
final_pos: [5, 10]
final_ori: [0, 1]
room_id: 3
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-right', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_model_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: ca87148432a7d552)

✅ Evaluation Results
id: ca87148432a7d552
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: e031d760b96a5da9)

✅ Evaluation Results
id: e031d760b96a5da9
question: You return to your starting position and face north. From a Top-Down map, describe where chair is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north east, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: f91d7ef70302b179)

✅ Evaluation Results
id: f91d7ef70302b179
question: You return to your starting position and face north. From a Top-Down map, describe where lego man is relative to pan. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: b39725205f4d5931)

✅ Evaluation Results
id: b39725205f4d5931
question: Now you jump to teddybear's direction, facing its direction. Describe where desklamp is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ddaba1a0c4c8aaed)

✅ Evaluation Results
id: ddaba1a0c4c8aaed
question: Now you jump to pan's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 583f1b341e5291a0)

✅ Evaluation Results
id: 583f1b341e5291a0
question: Now you jump to bike's direction, facing its direction. Describe where table is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, near
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: 38b08b9cd49edf9d)

✅ Evaluation Results
id: 38b08b9cd49edf9d
question: Now you jump to an object's position, facing its direction. You observe that desklamp is front, mid distance, facing forward; blue door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: teddybear
final_pos: [3, 3]
final_ori: [0, 1]
final_observation: [{'name': 'desklamp', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'blue door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 1
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 593eaa3f0e5ee139)

✅ Evaluation Results
id: 593eaa3f0e5ee139
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; chair is front, mid distance, facing left; table is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [12, 3]
final_ori: [0, 1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'table', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 2
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 8478901165ea117a)

✅ Evaluation Results
id: 8478901165ea117a
question: Now you jump to an object's position, facing its direction. You observe that airplane is front, mid distance, facing right; candle is front-left, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: fire extinguisher
final_pos: [6, 9]
final_ori: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
object_positions:
laptop: [4.0, 1.0]
bike: [14.0, 7.0]
airplane: [6.0, 13.0]
pan: [6.0, 3.0]
truck: [12.0, 3.0]
lego man: [2.0, 11.0]
teddybear: [3.0, 3.0]
desklamp: [3.0, 6.0]
chair: [12.0, 7.0]
candle: [2.0, 13.0]
table: [14.0, 5.0]
fire extinguisher: [6.0, 9.0]
green door: [9.0, 5.0]
blue door: [5.0, 7.0]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
room_id: 3
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 21808bda9b228db0)

✅ Evaluation Results
id: 21808bda9b228db0
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, mid distance. 3. Rotate(-180) 4. Jump to the object at front-left, mid distance. 5. Rotate(-180) After executing the actions, what is the ego relation of teddybear relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 604bedeabbf32688)

✅ Evaluation Results
id: 604bedeabbf32688
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-right, slightly far. 3. Rotate(-90) 4. Jump to the object at front, mid distance. 5. Rotate(-90) After executing the actions, what is the ego relation of green door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ab43fa08726d1772)

✅ Evaluation Results
id: ab43fa08726d1772
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front-slight-right, slightly far. 3. Rotate(90) 4. Jump to the object at front-right, slightly far. After executing the actions, what is the ego relation of fire extinguisher relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 1a5402f686fdbe8e)

✅ Evaluation Results
id: 1a5402f686fdbe8e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: candle is at front, near What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [2, 11]
final_ori: [0, 1]
room_id: 3
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'blue door'], ['jumpto', 'lego man']]
final_observation: [{'name': 'candle', 'direction': 'front', 'distance': 'near', 'orientation': None}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [2.0, 11.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 0240108a1a776391)

✅ Evaluation Results
id: 0240108a1a776391
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: bike is at front, near, facing backward; chair is at front-left, mid distance, facing left What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 5]
final_ori: [0, 1]
room_id: 2
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['jumpto', 'green door'], ['rotate', 90], ['jumpto', 'table'], ['rotate', -90]]
final_observation: [{'name': 'bike', 'direction': 'front', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'chair', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [14.0, 5.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: fe579174d12a0b9e)

✅ Evaluation Results
id: fe579174d12a0b9e
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: green door is at front-left, mid distance, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [6, 3]
final_ori: [1, 0]
room_id: 1
init_pos: [8, 2]
init_ori: [0, 1]
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
minimal_plan: [['rotate', -90], ['jumpto', 'pan'], ['rotate', 180]]
final_observation: [{'name': 'green door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [8.0, 2.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 046899a176fbe951)

✅ Evaluation Results
id: 046899a176fbe951
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, laptop, candle, table, fire extinguisher. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-2, 11], [-4, -1], [-6, 11], [6, 3], [-2, 7]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.715
threshold: 0.900
score: 0.715
evaluation_mode: use_model_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 64c2cfa4dfb804b2)

✅ Evaluation Results
id: 64c2cfa4dfb804b2
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: chair, pan, lego man. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[4, 5], [-2, 1], [-6, 9]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.612
threshold: 0.900
score: 0.612
evaluation_mode: use_model_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: bf689311469baa8a)

✅ Evaluation Results
id: bf689311469baa8a
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: lego man, pan, bike, fire extinguisher, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-6, 9], [-2, 1], [6, 5], [-2, 7], [-2, 11]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.693
threshold: 0.900
score: 0.693
evaluation_mode: use_model_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 79135364fb4b164f)

✅ Evaluation Results
id: 79135364fb4b164f
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, desklamp, laptop. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['airplane', 'desklamp', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 75467a0fbc94e6b7)

✅ Evaluation Results
id: 75467a0fbc94e6b7
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning clockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: chair, laptop, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['chair', 'truck', 'laptop']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 456b022cad9cba9a)

✅ Evaluation Results
id: 456b022cad9cba9a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: bike, lego man, teddybear. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['lego man', 'teddybear', 'bike']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 77fb7413d8ff5f85)

✅ Evaluation Results
id: 77fb7413d8ff5f85
question: Still treat your initial position as origin (0, 0) You move to (-3, 2) and face west. What is the egocentric relation of teddybear? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-left, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 3399c355c7d0785f)

✅ Evaluation Results
id: 3399c355c7d0785f
question: Still treat your initial position as origin (0, 0) You move to (-1, 0) and face west. What is the egocentric relation of pan? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 1c9e744fd28c4e95)

✅ Evaluation Results
id: 1c9e744fd28c4e95
question: Treat the blue door as the new 'origin' (0, 0). You move to (0, 3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-right, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 981cabb8e8f95e0e)

✅ Evaluation Results
id: 981cabb8e8f95e0e
question: You move to a new location and face west. You observe: teddybear is at front-left, mid distance, facing right; desklamp is at front-right, mid distance, facing right Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-3, 2]
final_pos: [5, 4]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'teddybear', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'desklamp', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing right'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.758
raw_score: 0.758
score: 0.758
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 56bb180ac8571782)

✅ Evaluation Results
id: 56bb180ac8571782
question: You move to a new location and face west. You observe: pan is at front-right, near, facing left; teddybear is at front-slight-right, slightly far, facing right; laptop is at front-slight-left, mid distance, facing left Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-1, 0]
final_pos: [7, 2]
final_ori: [-1, 0]
room_id: 1
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'pan', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'teddybear', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front-slight-left', 'distance': 'mid distance', 'orientation': 'facing left'}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.368
raw_score: 0.368
score: 0.368
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: d06f40c11fae70c2)

✅ Evaluation Results
id: d06f40c11fae70c2
question: You move to a new location and face north. You observe: airplane is at front-slight-right, mid distance, facing right; candle is at front-left, slightly far Treat the blue door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, 3]
final_pos: [5, 10]
final_ori: [0, 1]
room_id: 3
object_positions:
laptop: [4, 1]
bike: [14, 7]
airplane: [6, 13]
pan: [6, 3]
truck: [12, 3]
lego man: [2, 11]
teddybear: [3, 3]
desklamp: [3, 6]
chair: [12, 7]
candle: [2, 13]
table: [14, 5]
fire extinguisher: [6, 9]
green door: [9, 5]
blue door: [5, 7]
object_orientations:
laptop: [0, -1]
bike: [0, -1]
airplane: [1, 0]
pan: [0, -1]
truck: [0, 1]
lego man: [0, 1]
teddybear: [0, 1]
desklamp: [0, 1]
chair: [-1, 0]
fire extinguisher: [0, 1]
green door: [1, 0]
blue door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-right', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'candle', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
green door:
room_ids: [1, 2]
ori_by_room:
1: [-1, 0]
2: [1, 0]
blue door:
room_ids: [1, 3]
ori_by_room:
1: [0, -1]
3: [0, 1]
object_rooms:
laptop: 1
bike: 2
airplane: 3
pan: 1
truck: 2
lego man: 3
teddybear: 1
desklamp: 1
chair: 2
candle: 3
table: 2
fire extinguisher: 3
green door: [1, 2]
blue door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.717
raw_score: 0.717
score: 0.717
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask