Model: gpt-5.2

sample_run07

Select Configuration:

📊 Sample Metrics

🔍 Exploration

last_node_coverage: 0.929
last_edge_coverage: 0.488
n_exploration_steps: 21
action_counts:
move: 5
rotate: 13
return: 0
observe: 20
term: 0
forced_term: 1
query: 0
action_cost: 20
final_information_gain: 0.885
action_fail_ratio: 0.048
valid_action_ratio: 1
false_belief_steps: 7
false_belief_f1: 1
false_belief_f1_position: 1
false_belief_f1_facing: 1
false_belief_action_cost: 6
false_belief_action_cost_after_seen: 0

✅ Evaluation

overall:
n_total: 27
total_score: 14.248
avg_accuracy: 0.528
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833
PovEvaluationTask:
n_total: 3
task_score: 1.500
avg_accuracy: 0.500
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
Action2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2ActionTextEvaluationTask:
n_total: 3
task_score: 0
avg_accuracy: 0
AlloMappingEvaluationTask:
n_total: 3
task_score: 1.545
avg_accuracy: 0.515
RotEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
Location2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.702
avg_accuracy: 0.901

✅ Evaluation (prompt_cogmap)

overall:
n_total: 27
total_score: 18.347
avg_accuracy: 0.680
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
PovEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Action2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 1.685
avg_accuracy: 0.562
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2LocationTextEvaluationTask:
n_total: 3
task_score: 1.662
avg_accuracy: 0.554

✅ Evaluation (use_gt_cogmap)

overall:
n_total: 27
total_score: 25
avg_accuracy: 0.926
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
PovEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2LocationTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1

✅ Evaluation (use_model_cogmap)

overall:
n_total: 27
total_score: 18.162
avg_accuracy: 0.673
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
PovEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Action2ViewEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833
View2ActionTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
AlloMappingEvaluationTask:
n_total: 3
task_score: 1.799
avg_accuracy: 0.600
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 2.500
avg_accuracy: 0.833
View2LocationTextEvaluationTask:
n_total: 3
task_score: 1.363
avg_accuracy: 0.454

🧠 Cognitive Map

exploration:
error:
local_vs_gt_local_avg:
dir: 0.853
facing: 1
pos: 0.860
overall: 0.904
global_vs_gt_global_avg:
dir: 0.829
facing: 0.995
pos: 0.734
overall: 0.853
agent_vs_gt_agent_avg:
dir: 0.571
facing: 1
pos: 0.743
overall: 0.771
newly_observed_vs_gt_local_avg:
dir: 0.800
facing: 1
pos: 0.838
overall: 0.879
correctness:
last_global_vs_gt_full:
dir: 0.667
facing: 0.900
pos: 0.622
overall: 0.729
consistency:
local_vs_global_avg:
dir: 0.873
facing: 1
pos: 0.887
overall: 0.920
position_update_avg: 0.553
facing_update_avg: 0.993
position_stability_avg: 0.553
facing_stability_avg: 0.993
fog_probe:
f1_avg: 0.671
precision_avg: 0.538
recall_avg: 0.930
cogmap_fb:
metrics:
changed:
dir: None
pos: 0.724
facing: 0
overall: None
retention:
dir: None
pos: 0.486
facing: 0
overall: None
unchanged:
dir: 0.407
facing: 0.667
pos: 0.407
overall: 0.493
inertia: 0.723
inertia_list: [0.722682743763605]
unchanged_retention:
dir: None
pos: 0.649
facing: 0.800
overall: None
unchanged_retention_minus_retention:
pos: 0.440
facing: 1
unchanged_exploration:
dir: 0.709
facing: 1
pos: 0.641
overall: 0.783

🧭 False Belief CogMap

inertia: 0.723
changed:
dir: None
pos: 0.724
facing: 0
overall: None
retention:
dir: None
pos: 0.486
facing: 0
overall: None
unchanged:
dir: 0.407
facing: 0.667
pos: 0.407
overall: 0.493
unchanged_retention:
dir: None
pos: 0.649
facing: 0.800
overall: None
unchanged_retention_minus_retention:
pos: 0.440
facing: 1
unchanged_exploration:
dir: 0.709
facing: 1
pos: 0.641
overall: 0.783

📊 Performance Charts

Cognitive Map (Update)
Global Update Metrics
Cognitive Map (Full)
Global Full Metrics
Cognitive Map (Self-Tracking)
Global Self-Tracking Metrics
FB CogMap (Unchanged)
False Belief CogMap Unchanged per Turn
Fog Probe F1
Fog Probe F1 per Turn
Fog Probe Precision
Fog Probe Precision per Turn
Fog Probe Recall
Fog Probe Recall per Turn
Position Update
Position Update per Turn
Facing Update
Facing Update per Turn
Position Stability
Position Stability per Turn
Facing Stability
Facing Stability per Turn

🌍 Exploration Phase

🔄 Turn 1

💬 Assistant Action
Actions: [Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🧠 Cognitive Map Metrics
Global:
dir: 1
facing: 1
pos: 1
overall: 1
Global (Full):
dir: 0.008
facing: 0.100
pos: 0.067
overall: 0.058
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0
edge_coverage: 0
is_action_fail: False
step: 1
action_counts:
move: 0
rotate: 0
return: 0
observe: 1
term: 0
forced_term: 0
query: 0
information_gain: 0
reward: -0.100
is_done: False
is_valid_action: True
Current state
State at Turn 1

🔄 Turn 2

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        3
      ],
      "facing": "+x"
    },
    "yellow door": {
      "position": [
        4,
        4
      ]
    }
  }
}
🎯 Ground Truth
{
  "yellow door": {
    "position": [
      2,
      4
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      0,
      3
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        3
      ],
      "facing": "+x"
    },
    "yellow door": {
      "position": [
        4,
        4
      ]
    }
  }
}
🎯 Ground Truth
{
  "yellow door": {
    "position": [
      2,
      4
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      0,
      3
    ],
    "facing": "south"
  }
}
🗺️ Symbolic Fog Map
######################
#......########......#
#......+..*...#......#
#......#...B..#......#
#......#....CF+......#
#......#......#......#
#......#..DA..#......#
########.E....########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, D, E
🎯 Ground Truth: E, A, D
🧠 Cognitive Map Metrics
Global:
dir: 0.833
facing: 1
pos: 0.846
overall: 0.893
Global (Full):
dir: 0.042
facing: 0.200
pos: 0.169
overall: 0.137
Local:
dir: 0.667
facing: 1
pos: 0.815
overall: 0.827
Local (Newly):
dir: 0.667
facing: 1
pos: 0.815
overall: 0.827
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 2
action_counts:
move: 0
rotate: 1
return: 0
observe: 2
term: 0
forced_term: 0
query: 0
information_gain: 0.107
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 Turn 3

💬 Assistant Action
Actions: [JumpTo(yellow door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      5,
      -3
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      5,
      -3
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      8,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      8,
      -5
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        0,
        3
      ],
      "facing": "+y"
    },
    "suitcase": {
      "position": [
        1,
        3
      ],
      "facing": "-x"
    },
    "backpack": {
      "position": [
        -1,
        6
      ],
      "facing": "-x"
    }
  }
}
🎯 Ground Truth
{
  "suitcase": {
    "position": [
      2,
      3
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      0,
      3
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      -2,
      5
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        0,
        3
      ],
      "facing": "+y"
    },
    "suitcase": {
      "position": [
        1,
        3
      ],
      "facing": "-x"
    },
    "backpack": {
      "position": [
        -1,
        6
      ],
      "facing": "-x"
    }
  }
}
🎯 Ground Truth
{
  "suitcase": {
    "position": [
      2,
      3
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      0,
      3
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      -2,
      5
    ],
    "facing": "north"
  }
}
🗺️ Symbolic Fog Map
######################
#......########GH....#
#......+.....A#..K...#
#......#..I.D.#.J....#
#......#.....L*...C..#
#......#..F...#......#
#......#.B....#E.....#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, B, D, F, G, H, I, L
🎯 Ground Truth: I, F, B, H, E, G
🧠 Cognitive Map Metrics
Global:
dir: 1
facing: 1
pos: 0.809
overall: 0.936
Global (Full):
dir: 0.175
facing: 0.500
pos: 0.323
overall: 0.333
Local:
dir: 0.667
facing: 1
pos: 0.866
overall: 0.844
Local (Newly):
dir: 0.667
facing: 1
pos: 0.866
overall: 0.844
Fog Probe:
precision: 0.625
recall: 0.833
overall: 0.714
📈 Turn Metrics
node_coverage: 0.357
edge_coverage: 0.122
is_action_fail: False
step: 3
action_counts:
move: 1
rotate: 1
return: 0
observe: 3
term: 0
forced_term: 0
query: 0
information_gain: 0.222
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 Turn 4

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      4,
      -4
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      6,
      -6
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "shelf": {
      "position": [
        2,
        2
      ]
    }
  }
}
🎯 Ground Truth
{
  "shelf": {
    "position": [
      1,
      2
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "shelf": {
      "position": [
        2,
        2
      ]
    }
  }
}
🎯 Ground Truth
{
  "shelf": {
    "position": [
      1,
      2
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
######################
#......########DG....#
#......+I.F..H#L.....#
#......#......#......#
#......#..K...*..C...#
#......#......#......#
#......#...B..#A.J...#
########.....E########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, B, D, E, F, G, H, I, J, L
🎯 Ground Truth: I, K, B, D, G, L
🧠 Cognitive Map Metrics
Global:
dir: 0.786
facing: 1
pos: 0.753
overall: 0.846
Global (Full):
dir: 0.183
facing: 0.500
pos: 0.351
overall: 0.345
Local:
dir: 1
facing: 1
pos: 0.866
overall: 0.955
Local (Newly):
dir: 1
facing: 1
pos: 0.866
overall: 0.955
Fog Probe:
precision: 0.500
recall: 0.833
overall: 0.625
📈 Turn Metrics
node_coverage: 0.429
edge_coverage: 0.146
is_action_fail: False
step: 4
action_counts:
move: 1
rotate: 2
return: 0
observe: 4
term: 0
forced_term: 0
query: 0
information_gain: 0.260
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 Turn 5

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      5,
      -2
    ],
    "facing": "west"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      5,
      -2
    ]
  },
  "truck": {
    "position": [
      8,
      -2
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      8,
      -4
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -1
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -5
    ]
  },
  "laptop": {
    "position": [
      0,
      -2
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      0,
      -4
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      0
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "bike": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    },
    "laptop": {
      "position": [
        0,
        5
      ],
      "facing": "-x"
    },
    "brown door": {
      "position": [
        1,
        5
      ]
    }
  }
}
🎯 Ground Truth
{
  "bike": {
    "position": [
      -2,
      5
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      2,
      7
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      0,
      5
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "bike": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    },
    "laptop": {
      "position": [
        0,
        5
      ],
      "facing": "-x"
    },
    "brown door": {
      "position": [
        1,
        5
      ]
    }
  }
}
🎯 Ground Truth
{
  "bike": {
    "position": [
      -2,
      5
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      2,
      7
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      0,
      5
    ],
    "facing": "south"
  }
}
🗺️ Symbolic Fog Map
######################
#......########DC...F#
#......+......#E.....#
#......#......#....B.#
#......#......*......#
#......#......#...A..#
#......#......#......#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: D, E, C
🧠 Cognitive Map Metrics
Global:
dir: 0.891
facing: 1
pos: 0.848
overall: 0.913
Global (Full):
dir: 0.408
facing: 0.700
pos: 0.566
overall: 0.558
Local:
dir: 0.667
facing: 1
pos: 0.815
overall: 0.827
Local (Newly):
dir: 0.667
facing: 1
pos: 0.815
overall: 0.827
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.220
is_action_fail: False
step: 5
action_counts:
move: 1
rotate: 3
return: 0
observe: 5
term: 0
forced_term: 0
query: 0
information_gain: 0.362
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 Turn 6

💬 Assistant Action
Actions: [JumpTo(brown door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      -1
    ],
    "facing": "west"
  },
  "yellow door": {
    "position": [
      5,
      -3
    ]
  },
  "brown door": {
    "position": [
      0,
      -1
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      8,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      8,
      -5
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -1
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -6
    ]
  },
  "laptop": {
    "position": [
      0,
      -3
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      0,
      -5
    ],
    "facing": "north"
  },
  "pillow": {
    "position": [
      -3,
      -1
    ]
  },
  "cap": {
    "position": [
      -5,
      -2
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -5,
      -4
    ]
  },
  "white chair": {
    "position": [
      -4,
      -4
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    },
    "white chair": {
      "position": [
        -3,
        3
      ],
      "facing": "-y"
    },
    "wine": {
      "position": [
        -3,
        5
      ]
    },
    "pillow": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "pillow": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "white chair": {
    "position": [
      -4,
      4
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      6
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -4,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    },
    "white chair": {
      "position": [
        -3,
        3
      ],
      "facing": "-y"
    },
    "wine": {
      "position": [
        -3,
        5
      ]
    },
    "pillow": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "pillow": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "white chair": {
    "position": [
      -4,
      4
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      6
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -4,
      6
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
######################
#......########IJ..D.#
#..E...*......#A.....#
#......#......#......#
#...B..#......+.....G#
#L...CH#......#......#
#...K..#......#.....F#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, D, F, G, I, J
🎯 Ground Truth: H, C, K, I, J, A
🧠 Cognitive Map Metrics
Global:
dir: 0.857
facing: 1
pos: 0.688
overall: 0.848
Global (Full):
dir: 0.750
facing: 0.900
pos: 0.642
overall: 0.764
Local:
dir: 1
facing: 1
pos: 0.826
overall: 0.942
Local (Newly):
dir: 1
facing: 1
pos: 0.826
overall: 0.942
Fog Probe:
precision: 0.500
recall: 0.500
overall: 0.500
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.317
is_action_fail: False
step: 6
action_counts:
move: 2
rotate: 3
return: 0
observe: 6
term: 0
forced_term: 0
query: 0
information_gain: 0.468
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 Turn 7

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      -2
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      5,
      -3
    ]
  },
  "truck": {
    "position": [
      8,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      8,
      -5
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -6
    ]
  },
  "laptop": {
    "position": [
      0,
      -3
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      0,
      -4
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      0,
      -2
    ]
  },
  "pillow": {
    "position": [
      -3,
      -2
    ]
  },
  "wine": {
    "position": [
      -5,
      -4
    ]
  },
  "cap": {
    "position": [
      -5,
      -3
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -4,
      -4
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#..B...########DH....#
#......*......#KL....#
#.J....#......#.A....#
#......#......+......#
#.E..FI#......#...C..#
#....G.#......#......#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, B, C, D, E, F, G, H, I, J, K, L
🎯 Ground Truth: I, F, G, K, H, D
🧠 Cognitive Map Metrics
Global:
dir: 0.829
facing: 0.889
pos: 0.672
overall: 0.797
Global (Full):
dir: 0.725
facing: 0.800
pos: 0.627
overall: 0.717
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.317
is_action_fail: False
step: 7
action_counts:
move: 2
rotate: 4
return: 0
observe: 7
term: 0
forced_term: 0
query: 0
information_gain: 0.468
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 Turn 8

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ]
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -5
    ]
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ]
  },
  "cap": {
    "position": [
      -8,
      -1
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -8,
      -3
    ]
  },
  "white chair": {
    "position": [
      -6,
      -3
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -6,
      0
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        5
      ],
      "facing": "+x"
    },
    "laptop": {
      "position": [
        2,
        3
      ],
      "facing": "+x"
    },
    "shelf": {
      "position": [
        4,
        4
      ]
    },
    "yellow door": {
      "position": [
        2,
        5
      ]
    }
  }
}
🎯 Ground Truth
{
  "shelf": {
    "position": [
      4,
      6
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "laptop": {
    "position": [
      2,
      2
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      2,
      7
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        5
      ],
      "facing": "+x"
    },
    "laptop": {
      "position": [
        2,
        3
      ],
      "facing": "+x"
    },
    "shelf": {
      "position": [
        4,
        4
      ]
    },
    "yellow door": {
      "position": [
        2,
        5
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########BL....#
#K.....*......#I.....#
#......#......#.H....#
#...F.C#......+....DE#
#..G...#......#......#
#...AJ.#......#......#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, C, F, G, J, K
🎯 Ground Truth: C, A, J, I, B, L
🧠 Cognitive Map Metrics
Global:
dir: 0.962
facing: 1
pos: 0.885
overall: 0.949
Global (Full):
dir: 0.842
facing: 0.900
pos: 0.826
overall: 0.856
Local:
dir: 0.900
facing: 1
pos: 0.796
overall: 0.899
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 0.500
overall: 0.500
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.390
is_action_fail: False
step: 8
action_counts:
move: 2
rotate: 5
return: 0
observe: 8
term: 0
forced_term: 0
query: 0
information_gain: 0.805
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 Turn 9

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      1
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      4,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      5,
      -2
    ]
  },
  "suitcase": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      8,
      -2
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      11,
      -1
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -4
    ]
  },
  "bike": {
    "position": [
      0,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      0,
      -2
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -2,
      1
    ]
  },
  "cap": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -6,
      -5
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -6,
      -3
    ]
  },
  "pillow": {
    "position": [
      -5,
      1
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "bike": {
      "position": [
        -2,
        5
      ],
      "facing": "-y"
    },
    "white chair": {
      "position": [
        2,
        5
      ],
      "facing": "-x"
    },
    "laptop": {
      "position": [
        -1,
        3
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
{
  "white chair": {
    "position": [
      4,
      4
    ],
    "facing": "east"
  },
  "bike": {
    "position": [
      -2,
      4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -2,
      2
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "bike": {
      "position": [
        -2,
        5
      ],
      "facing": "-y"
    },
    "white chair": {
      "position": [
        2,
        5
      ],
      "facing": "-x"
    },
    "laptop": {
      "position": [
        -1,
        3
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########EB....#
#......*......#D.....#
#......#......#...C.F#
#......#......+......#
#......#......#......#
#......#......#....A.#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: B, E, D
🧠 Cognitive Map Metrics
Global:
dir: 0.771
facing: 1
pos: 0.763
overall: 0.845
Global (Full):
dir: 0.675
facing: 0.900
pos: 0.712
overall: 0.762
Local:
dir: 0.167
facing: 1
pos: 0.790
overall: 0.652
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.415
is_action_fail: False
step: 9
action_counts:
move: 2
rotate: 6
return: 0
observe: 9
term: 0
forced_term: 0
query: 0
information_gain: 0.837
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 9
Current state
State at Turn 9

🔄 Turn 10

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      -1
    ],
    "facing": "west"
  },
  "yellow door": {
    "position": [
      5,
      -3
    ]
  },
  "brown door": {
    "position": [
      0,
      -1
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      8,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      8,
      -4
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      12,
      -1
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "laptop": {
    "position": [
      0,
      -3
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      0,
      -5
    ],
    "facing": "north"
  },
  "pillow": {
    "position": [
      -3,
      -1
    ]
  },
  "cap": {
    "position": [
      -5,
      -3
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -5,
      -4
    ]
  },
  "white chair": {
    "position": [
      -4,
      -4
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -1,
        6
      ],
      "facing": "+x"
    },
    "white chair": {
      "position": [
        -3,
        4
      ],
      "facing": "-y"
    },
    "wine": {
      "position": [
        -3,
        6
      ]
    },
    "pillow": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "pillow": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "white chair": {
    "position": [
      -4,
      4
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      6
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -4,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -1,
        6
      ],
      "facing": "+x"
    },
    "white chair": {
      "position": [
        -3,
        4
      ],
      "facing": "-y"
    },
    "wine": {
      "position": [
        -3,
        6
      ]
    },
    "pillow": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########CE....#
#......*......#B....D#
#......#......#......#
#......#......+...F..#
#......#......#......#
#......#......#.....A#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: E, B, C
🧠 Cognitive Map Metrics
Global:
dir: 0.829
facing: 1
pos: 0.676
overall: 0.835
Global (Full):
dir: 0.725
facing: 0.900
pos: 0.631
overall: 0.752
Local:
dir: 0.900
facing: 1
pos: 0.866
overall: 0.922
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.415
is_action_fail: False
step: 10
action_counts:
move: 2
rotate: 7
return: 0
observe: 10
term: 0
forced_term: 0
query: 0
information_gain: 0.837
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 10
Current state
State at Turn 10

🔄 Turn 11

💬 Assistant Action
Actions: [JumpTo(truck), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -2
    ],
    "facing": "west"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "brown door": {
    "position": [
      -2,
      -2
    ]
  },
  "airplane": {
    "position": [
      4,
      -1
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -6
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "laptop": {
    "position": [
      0,
      -4
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      0,
      -6
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -8,
      -5
    ]
  },
  "cap": {
    "position": [
      -7,
      -5
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -8,
      -6
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -5,
      -2
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -1,
        6
      ],
      "facing": "+x"
    },
    "wine": {
      "position": [
        -3,
        6
      ]
    },
    "white chair": {
      "position": [
        -3,
        4
      ],
      "facing": "-y"
    },
    "pillow": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "pillow": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "white chair": {
    "position": [
      -4,
      4
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      6
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -4,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -1,
        6
      ],
      "facing": "+x"
    },
    "wine": {
      "position": [
        -3,
        6
      ]
    },
    "white chair": {
      "position": [
        -3,
        4
      ],
      "facing": "-y"
    },
    "pillow": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########EA....#
#......*......#F.....#
#......#......#......#
#......#......+....D.#
#......#......#......#
#......#......#C..B..#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: F, E, A
🧠 Cognitive Map Metrics
Global:
dir: 0.819
facing: 1
pos: 0.721
overall: 0.847
Global (Full):
dir: 0.717
facing: 0.900
pos: 0.673
overall: 0.763
Local:
dir: 0.900
facing: 1
pos: 0.866
overall: 0.922
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.415
is_action_fail: True
step: 11
action_counts:
move: 2
rotate: 7
return: 0
observe: 11
term: 0
forced_term: 0
query: 0
information_gain: 0.837
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 11
Current state
State at Turn 11

🔄 Turn 12

💬 Assistant Action
Actions: [JumpTo(pillow), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -5,
      -2
    ],
    "facing": "west"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "suitcase": {
    "position": [
      7,
      -6
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "bike": {
    "position": [
      0,
      -7
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      0,
      -5
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -2,
      -2
    ]
  },
  "cap": {
    "position": [
      -6,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -4,
      -6
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -6,
      -6
    ]
  },
  "pillow": {
    "position": [
      -5,
      -2
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -2,
        2
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      -2,
      2
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -2,
        2
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########ED....#
#..*...+......#A.B...#
#......#......#.....C#
#......#......+......#
#......#......#......#
#......#......#F.....#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: D, E, A
🧠 Cognitive Map Metrics
Global:
dir: 0.771
facing: 1
pos: 0.677
overall: 0.816
Global (Full):
dir: 0.675
facing: 0.900
pos: 0.632
overall: 0.736
Local:
dir: 1
facing: 1
pos: 1
overall: 1
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.439
is_action_fail: False
step: 12
action_counts:
move: 3
rotate: 7
return: 0
observe: 12
term: 0
forced_term: 0
query: 0
information_gain: 0.844
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 12
Current state
State at Turn 12

🔄 Turn 13

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -4,
      -1
    ],
    "facing": "north"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      6,
      -3
    ]
  },
  "truck": {
    "position": [
      9,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      9,
      -5
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      11,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      5,
      -6
    ]
  },
  "laptop": {
    "position": [
      1,
      -3
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      1,
      -5
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -1
    ]
  },
  "pillow": {
    "position": [
      -4,
      -1
    ]
  },
  "wine": {
    "position": [
      -6,
      -5
    ]
  },
  "cap": {
    "position": [
      -6,
      -3
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -4,
      -5
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########AC.D..#
#..*...+......#E.....#
#......#......#......#
#......#......+F.....#
#......#......#.....B#
#......#......#......#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E
🎯 Ground Truth: C, A, E
🧠 Cognitive Map Metrics
Global:
dir: 0.914
facing: 1
pos: 0.685
overall: 0.867
Global (Full):
dir: 0.800
facing: 0.900
pos: 0.640
overall: 0.780
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 0.600
recall: 1
overall: 0.750
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.439
is_action_fail: False
step: 13
action_counts:
move: 3
rotate: 8
return: 0
observe: 13
term: 0
forced_term: 0
query: 0
information_gain: 0.844
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 13
Current state
State at Turn 13

🔄 Turn 14

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -4,
      5
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      5,
      3
    ]
  },
  "brown door": {
    "position": [
      -1,
      5
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "suitcase": {
    "position": [
      8,
      1
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      8,
      3
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      11,
      5
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      1
    ]
  },
  "bike": {
    "position": [
      -1,
      1
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      3
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -5,
      1
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -7,
      1
    ]
  },
  "pillow": {
    "position": [
      -4,
      5
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "brown door": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########FD....#
#..*...+......#E.....#
#......#......#......#
#......#......+.B....#
#......#......#...A..#
#......#......#...C..#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: E, F, D
🧠 Cognitive Map Metrics
Global:
dir: 0.705
facing: 1
pos: 0.478
overall: 0.728
Global (Full):
dir: 0.617
facing: 0.900
pos: 0.446
overall: 0.654
Local:
dir: 1
facing: 1
pos: 0.866
overall: 0.955
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.439
is_action_fail: False
step: 14
action_counts:
move: 3
rotate: 9
return: 0
observe: 14
term: 0
forced_term: 0
query: 0
information_gain: 0.844
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 14
Current state
State at Turn 14

🔄 Turn 15

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -4,
      -1
    ],
    "facing": "south"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -3
    ]
  },
  "truck": {
    "position": [
      7,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -5
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -1
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -5
    ]
  },
  "laptop": {
    "position": [
      0,
      -3
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      0,
      -4
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -1
    ]
  },
  "wine": {
    "position": [
      -6,
      -4
    ]
  },
  "cap": {
    "position": [
      -6,
      -2
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -4,
      -4
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -4,
      -1
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        2,
        3
      ],
      "facing": "-y"
    },
    "white chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "wine": {
      "position": [
        2,
        4
      ]
    }
  }
}
🎯 Ground Truth
{
  "white chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      2,
      2
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      2,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        2,
        3
      ],
      "facing": "-y"
    },
    "white chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "wine": {
      "position": [
        2,
        4
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########CB.F..#
#..*...+......#D.....#
#......#......#..A...#
#......#......+..E...#
#......#......#......#
#......#......#......#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: D, B, C
🧠 Cognitive Map Metrics
Global:
dir: 0.886
facing: 1
pos: 0.740
overall: 0.875
Global (Full):
dir: 0.775
facing: 0.900
pos: 0.691
overall: 0.789
Local:
dir: 1
facing: 1
pos: 0.920
overall: 0.973
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 15
action_counts:
move: 3
rotate: 10
return: 0
observe: 15
term: 0
forced_term: 0
query: 0
information_gain: 0.885
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 15
Current state
State at Turn 15

🔄 Turn 16

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -5,
      -3
    ],
    "facing": "west"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "suitcase": {
    "position": [
      7,
      -6
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      10,
      -3
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "bike": {
    "position": [
      -2,
      -5
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -2,
      -4
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -2,
      -3
    ]
  },
  "cap": {
    "position": [
      -7,
      -6
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -6,
      -7
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -8,
      -7
    ]
  },
  "pillow": {
    "position": [
      -5,
      -3
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -2,
        3
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      -2,
      2
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -2,
        3
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########BF....#
#..*...+......#D.....#
#......#......#......#
#......#......+..C..E#
#......#......#.....A#
#......#......#......#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: B, F, D
🧠 Cognitive Map Metrics
Global:
dir: 0.771
facing: 1
pos: 0.667
overall: 0.813
Global (Full):
dir: 0.675
facing: 0.900
pos: 0.623
overall: 0.733
Local:
dir: 1
facing: 1
pos: 0.866
overall: 0.955
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 16
action_counts:
move: 3
rotate: 11
return: 0
observe: 16
term: 0
forced_term: 0
query: 0
information_gain: 0.885
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 16
Current state
State at Turn 16

🔄 Turn 17

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "brown door": {
    "position": [
      -2,
      0
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -6
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "laptop": {
    "position": [
      -2,
      -4
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      -2,
      -6
    ],
    "facing": "north"
  },
  "cap": {
    "position": [
      -8,
      -2
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -8,
      -4
    ]
  },
  "white chair": {
    "position": [
      -6,
      -4
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -5,
      0
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "brown door": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########BA....#
#..*...+......#D.....#
#......#......#......#
#......#......+....E.#
#......#......#......#
#......#......#..C.F.#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: B, A, D
🧠 Cognitive Map Metrics
Global:
dir: 0.810
facing: 1
pos: 0.774
overall: 0.861
Global (Full):
dir: 0.708
facing: 0.900
pos: 0.723
overall: 0.777
Local:
dir: 1
facing: 1
pos: 0.866
overall: 0.955
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 17
action_counts:
move: 3
rotate: 12
return: 0
observe: 17
term: 0
forced_term: 0
query: 0
information_gain: 0.885
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 17
Current state
State at Turn 17

🔄 Turn 18

💬 Assistant Action
Actions: [JumpTo(brown door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -2
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "suitcase": {
    "position": [
      6,
      -6
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      10,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "bike": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -2,
      -4
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -2,
      -2
    ]
  },
  "cap": {
    "position": [
      -8,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -5
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -8,
      -5
    ]
  },
  "pillow": {
    "position": [
      -5,
      -2
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        6
      ],
      "facing": "+x"
    },
    "laptop": {
      "position": [
        2,
        2
      ],
      "facing": "+x"
    },
    "shelf": {
      "position": [
        4,
        4
      ]
    },
    "yellow door": {
      "position": [
        2,
        6
      ]
    }
  }
}
🎯 Ground Truth
{
  "shelf": {
    "position": [
      4,
      6
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "laptop": {
    "position": [
      2,
      2
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      2,
      7
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "airplane": {
      "position": [
        0,
        6
      ],
      "facing": "+x"
    },
    "laptop": {
      "position": [
        2,
        2
      ],
      "facing": "+x"
    },
    "shelf": {
      "position": [
        4,
        4
      ]
    },
    "yellow door": {
      "position": [
        2,
        6
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########EC....#
#......*......#A.....#
#......#......#......#
#......#......+F.....#
#......#......#.....B#
#......#......#..D...#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: C, A, E
🧠 Cognitive Map Metrics
Global:
dir: 0.790
facing: 1
pos: 0.736
overall: 0.842
Global (Full):
dir: 0.692
facing: 0.900
pos: 0.687
overall: 0.760
Local:
dir: 0.800
facing: 1
pos: 0.851
overall: 0.884
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 18
action_counts:
move: 4
rotate: 12
return: 0
observe: 18
term: 0
forced_term: 0
query: 0
information_gain: 0.885
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 18
Current state
State at Turn 18

🔄 Turn 19

💬 Assistant Action
Actions: [JumpTo(yellow door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      5,
      -4
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      5,
      -4
    ]
  },
  "suitcase": {
    "position": [
      8,
      -6
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      8,
      -4
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      10,
      -3
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      3,
      -6
    ]
  },
  "bike": {
    "position": [
      1,
      -7
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      1,
      -5
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      1,
      -1
    ]
  },
  "cap": {
    "position": [
      -3,
      -3
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -2,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -4,
      -4
    ]
  },
  "pillow": {
    "position": [
      -2,
      -1
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        0,
        3
      ],
      "facing": "+y"
    },
    "suitcase": {
      "position": [
        1,
        3
      ],
      "facing": "-x"
    },
    "backpack": {
      "position": [
        -1,
        5
      ],
      "facing": "-x"
    }
  }
}
🎯 Ground Truth
{
  "suitcase": {
    "position": [
      2,
      3
    ],
    "facing": "north"
  },
  "truck": {
    "position": [
      0,
      3
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      -2,
      5
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        0,
        3
      ],
      "facing": "+y"
    },
    "suitcase": {
      "position": [
        1,
        3
      ],
      "facing": "-x"
    },
    "backpack": {
      "position": [
        -1,
        5
      ],
      "facing": "-x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########CD....#
#......+......#B..E..#
#......#......#..A...#
#......#......*......#
#......#......#......#
#......#......#..F...#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: D, C, B
🧠 Cognitive Map Metrics
Global:
dir: 0.648
facing: 1
pos: 0.588
overall: 0.745
Global (Full):
dir: 0.567
facing: 0.900
pos: 0.548
overall: 0.672
Local:
dir: 0.833
facing: 1
pos: 0.889
overall: 0.907
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 19
action_counts:
move: 5
rotate: 12
return: 0
observe: 19
term: 0
forced_term: 0
query: 0
information_gain: 0.885
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 19
Current state
State at Turn 19

🔄 Turn 20

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      4,
      -3
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -3
    ]
  },
  "brown door": {
    "position": [
      -1,
      0
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      7,
      -3
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -5
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      8,
      -1
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "laptop": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      -1,
      -6
    ],
    "facing": "north"
  },
  "pillow": {
    "position": [
      -4,
      0
    ]
  },
  "cap": {
    "position": [
      -6,
      -2
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -6,
      -4
    ]
  },
  "white chair": {
    "position": [
      -4,
      -4
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "shelf": {
      "position": [
        2,
        2
      ]
    }
  }
}
🎯 Ground Truth
{
  "shelf": {
    "position": [
      1,
      2
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "shelf": {
      "position": [
        2,
        2
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
######################
#......########CFE...#
#......+......#D.....#
#......#......#......#
#......#......*......#
#......#......#......#
#......#......#..AB..#
########......########
######################
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: C, F, D
🧠 Cognitive Map Metrics
Global:
dir: 0.771
facing: 1
pos: 0.749
overall: 0.840
Global (Full):
dir: 0.675
facing: 0.900
pos: 0.699
overall: 0.758
Local:
dir: 1
facing: 1
pos: 0.866
overall: 0.955
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 20
action_counts:
move: 5
rotate: 13
return: 0
observe: 20
term: 0
forced_term: 0
query: 0
information_gain: 0.885
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 20
Current state
State at Turn 20

🔄 Turn 21

💬 Assistant Action
Actions: [Term()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      4,
      -4
    ],
    "facing": "south"
  },
  "yellow door": {
    "position": [
      4,
      -4
    ]
  },
  "brown door": {
    "position": [
      0,
      -2
    ]
  },
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "truck": {
    "position": [
      7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -6
    ],
    "facing": "north"
  },
  "backpack": {
    "position": [
      9,
      -2
    ],
    "facing": "north"
  },
  "shelf": {
    "position": [
      2,
      -6
    ]
  },
  "laptop": {
    "position": [
      -1,
      -4
    ],
    "facing": "south"
  },
  "bike": {
    "position": [
      -1,
      -6
    ],
    "facing": "north"
  },
  "pillow": {
    "position": [
      -3,
      -2
    ]
  },
  "cap": {
    "position": [
      -5,
      -4
    ],
    "facing": "north"
  },
  "wine": {
    "position": [
      -5,
      -5
    ]
  },
  "white chair": {
    "position": [
      -5,
      -6
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "airplane": {
    "position": [
      3,
      0
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      -9,
      -2
    ],
    "facing": "north"
  },
  "alarmclock": {
    "position": [
      5,
      0
    ],
    "facing": "north"
  },
  "bike": {
    "position": [
      -1,
      -4
    ],
    "facing": "north"
  },
  "white chair": {
    "position": [
      -7,
      -4
    ],
    "facing": "east"
  },
  "suitcase": {
    "position": [
      7,
      -4
    ],
    "facing": "north"
  },
  "laptop": {
    "position": [
      -1,
      -2
    ],
    "facing": "south"
  },
  "shelf": {
    "position": [
      3,
      -4
    ],
    "facing": "east"
  },
  "wine": {
    "position": [
      -9,
      -4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      7,
      -2
    ],
    "facing": "east"
  },
  "pillow": {
    "position": [
      -7,
      0
    ],
    "facing": "east"
  },
  "backpack": {
    "position": [
      9,
      0
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -3,
      0
    ],
    "facing": "east"
  },
  "yellow door": {
    "position": [
      4,
      -2
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      4,
      -2
    ],
    "facing": "south"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.762
facing: 1
pos: 0.666
overall: 0.809
Global (Full):
dir: 0.667
facing: 0.900
pos: 0.622
overall: 0.729
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0.929
edge_coverage: 0.488
is_action_fail: False
step: 21
action_counts:
move: 5
rotate: 13
return: 0
observe: 20
term: 0
forced_term: 1
query: 0
information_gain: 0.885
reward: -0.100
is_done: True
is_valid_action: True
Previous state
State before Turn 21
Current state
State at Turn 21

🧭 False Belief Exploration

🔄 FB Turn 22

💬 Assistant Action
Actions: [Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.894
facing: 1
pos: 0.891
overall: 0.928
🧾 False Belief Object Sets
all_objects: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
all_changed_objects: ['alarmclock', 'laptop', 'suitcase', 'truck']
newly_observed_changed (this turn): []
unchanged_objects: ['airplane', 'backpack', 'bike', 'brown door', 'cap', 'pillow', 'shelf', 'white chair', 'wine', 'yellow door']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
🧭 False Belief Info
step: 1
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Current state
State at Turn 1

🔄 FB Turn 23

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.121
facing: 0.500
pos: 0.109
overall: 0.243
🧾 False Belief Object Sets
all_objects: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
all_changed_objects: ['alarmclock', 'laptop', 'suitcase', 'truck']
newly_observed_changed (this turn): []
unchanged_objects: ['airplane', 'backpack', 'bike', 'brown door', 'cap', 'pillow', 'shelf', 'white chair', 'wine', 'yellow door']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
🧭 False Belief Info
step: 2
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['airplane', 'yellow door']
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 FB Turn 24

💬 Assistant Action
Actions: [JumpTo(yellow door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: truck:
dir: None
pos: None
facing: 0
overall: None
Retention: truck:
dir: None
pos: None
facing: 0
overall: None
Changed: suitcase:
dir: None
pos: None
facing: 0
overall: None
Retention: suitcase:
dir: None
pos: None
facing: 0
overall: None
Unchanged (all):
dir: 0.121
facing: 0.167
pos: 0.125
overall: 0.138
🧾 False Belief Object Sets
all_objects: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
all_changed_objects: ['alarmclock', 'laptop', 'suitcase', 'truck']
newly_observed_changed (this turn): ['suitcase', 'truck']
unchanged_objects: ['airplane', 'backpack', 'bike', 'brown door', 'cap', 'pillow', 'shelf', 'white chair', 'wine', 'yellow door']
pred_changed_keys: ['suitcase', 'truck']
pred_unchanged_keys: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
🧭 False Belief Info
step: 3
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['truck', 'suitcase']
newly_observed_unchanged_objects: ['backpack']
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 FB Turn 25

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.591
facing: 1
pos: 0.714
overall: 0.768
🧾 False Belief Object Sets
all_objects: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
all_changed_objects: ['alarmclock', 'laptop', 'suitcase', 'truck']
newly_observed_changed (this turn): []
unchanged_objects: ['airplane', 'backpack', 'bike', 'brown door', 'cap', 'pillow', 'shelf', 'white chair', 'wine', 'yellow door']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
🧭 False Belief Info
step: 4
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['shelf']
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 FB Turn 26

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.121
facing: 0.500
pos: 0.097
overall: 0.239
🧾 False Belief Object Sets
all_objects: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
all_changed_objects: ['alarmclock', 'laptop', 'suitcase', 'truck']
newly_observed_changed (this turn): []
unchanged_objects: ['airplane', 'backpack', 'bike', 'brown door', 'cap', 'pillow', 'shelf', 'white chair', 'wine', 'yellow door']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
🧭 False Belief Info
step: 5
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['brown door', 'bike']
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 FB Turn 27

💬 Assistant Action
Actions: [JumpTo(brown door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: laptop:
dir: None
pos: 0.634
facing: None
overall: None
Retention: laptop:
dir: None
pos: 0.486
facing: None
overall: None
Changed: alarmclock:
dir: None
pos: 0.815
facing: None
overall: None
Retention: alarmclock:
dir: None
pos: None
facing: None
overall: None
Unchanged (all):
dir: 0.591
facing: 0.833
pos: 0.504
overall: 0.643
🧾 False Belief Object Sets
all_objects: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
all_changed_objects: ['alarmclock', 'laptop', 'suitcase', 'truck']
newly_observed_changed (this turn): ['alarmclock', 'laptop']
unchanged_objects: ['airplane', 'backpack', 'bike', 'brown door', 'cap', 'pillow', 'shelf', 'white chair', 'wine', 'yellow door']
pred_changed_keys: ['alarmclock', 'laptop']
pred_unchanged_keys: ['airplane', 'alarmclock', 'backpack', 'bike', 'brown door', 'cap', 'laptop', 'pillow', 'shelf', 'suitcase', 'truck', 'white chair', 'wine', 'yellow door']
🧭 False Belief Info
step: 6
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['laptop', 'alarmclock']
newly_observed_unchanged_objects: ['cap', 'white chair', 'pillow', 'wine']
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 FB Turn 28

💬 Assistant Action
Actions: [Term(changes="suitcase: orientation, truck: orientation, laptop: position, alarmclock: position")]
📈 Turn Metrics
reward: 1
is_done: True
is_valid_action: True
success: 1
🧭 False Belief Info
step: 7
correctly_identified_changes: 1
f1_overall: 1
f1_position: 1
f1_facing: 1
action_cost: 6
action_cost_after_seen: 0
ground_truth_changes: [{'name': 'truck', 'ori': True}, {'name': 'suitcase', 'ori': True}, {'name': 'alarmclock', 'pos': True}, {'name': 'laptop', 'pos': True}]
reported_changes: [{'name': 'suitcase', 'ori': True}, {'name': 'truck', 'ori': True}, {'name': 'laptop', 'pos': True}, {'name': 'alarmclock', 'pos': True}]
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 7
Current state
State at Turn 7

📊 Evaluation (default)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 3af22411dc8e4653)

✅ Evaluation Results
id: 3af22411dc8e4653
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: f2b0e3268c58b4c8)

✅ Evaluation Results
id: f2b0e3268c58b4c8
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: south, mid distance
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: ae731068ff074970)

✅ Evaluation Results
id: ae731068ff074970
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: east, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77dc57ad53ccff4c)

✅ Evaluation Results
id: 77dc57ad53ccff4c
question: Now you jump to airplane's direction, facing its direction. Describe where bike is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ba63e01f9f8cf08f)

✅ Evaluation Results
id: ba63e01f9f8cf08f
question: Now you jump to truck's direction, facing its direction. Describe where backpack is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: fe59923b2b52093d)

✅ Evaluation Results
id: fe59923b2b52093d
question: Now you jump to airplane's direction, facing its direction. Describe where shelf is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: db00fbb4ebb9f189)

✅ Evaluation Results
id: db00fbb4ebb9f189
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; shelf is front, mid distance; yellow door is front-left, mid distance, on left wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: airplane
final_pos: [13, 6]
final_ori: [0, -1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'shelf', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'yellow door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on left wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 1
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: default
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: dbd8ca2192fa7515)

✅ Evaluation Results
id: dbd8ca2192fa7515
question: Now you jump to an object's position, facing its direction. You observe that pillow is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: cap
final_pos: [1, 4]
final_ori: [0, 1]
final_observation: [{'name': 'pillow', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 2c823d1f2d940432)

✅ Evaluation Results
id: 2c823d1f2d940432
question: Now you jump to an object's position, facing its direction. You observe that brown door is front-left, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: white chair
final_pos: [3, 2]
final_ori: [1, 0]
final_observation: [{'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: default
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 6d169a70c94f49de)

✅ Evaluation Results
id: 6d169a70c94f49de
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-left, slightly far. 3. Rotate(90) 4. Among objects which are front-right, slightly far to you, you jump to the 2nd from left also farthest one. 5. Rotate(-180) After executing the actions, what is the ego relation of yellow door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6a9b2df21e9fa7d6)

✅ Evaluation Results
id: 6a9b2df21e9fa7d6
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, mid distance. 3. Among objects which are front-left, slightly far to you, you jump to the 2nd from left also farthest one. 4. Rotate(-180) After executing the actions, what is the ego relation of white chair relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: b48679bb04763dd4)

✅ Evaluation Results
id: b48679bb04763dd4
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-right, mid distance. 3. Rotate(-90) 4. Jump to the object at front, slightly far. After executing the actions, what is the ego relation of suitcase relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: ba3e02e16a5c87a1)

✅ Evaluation Results
id: ba3e02e16a5c87a1
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: suitcase is at front-left, slightly far, facing backward; truck is at front-left, mid distance, facing left; yellow door is at front-right, mid distance, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [15, 6]
final_ori: [0, -1]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['rotate', -90], ['jumpto', 'alarmclock'], ['rotate', 180]]
final_observation: [{'name': 'suitcase', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'yellow door', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: False
final_pos: [13.0, 2.0]
final_ori: [0, 1]
visible_match: False
score: 0
evaluation_mode: default
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: acb07825c6116973)

✅ Evaluation Results
id: acb07825c6116973
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: airplane is at front-left, mid distance, facing backward; alarmclock is at front-right, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 4]
final_ori: [0, 1]
room_id: [1, 3]
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'initial_pos'], ['rotate', -90]]
final_observation: [{'name': 'airplane', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'alarmclock', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: False
final_pos: [9.0, 4.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: default
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: 3f3f07a01338a14c)

✅ Evaluation Results
id: 3f3f07a01338a14c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: alarmclock is at front, mid distance, facing right; truck is at front-left, mid distance, facing backward; yellow door is at front-slight-left, slightly far, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [19, 6]
final_ori: [-1, 0]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['jumpto', 'backpack'], ['rotate', 180]]
final_observation: [{'name': 'alarmclock', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'yellow door', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [17.0, 2.0]
final_ori: [-1, 0]
visible_match: False
score: 0
evaluation_mode: default
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 9c329788def30f4f)

✅ Evaluation Results
id: 9c329788def30f4f
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, laptop, pillow, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-1, -2], [-7, 0], [3, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
error: invalid_prediction_format
score: 0
evaluation_mode: default
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 9bdf383982e77bb0)

✅ Evaluation Results
id: 9bdf383982e77bb0
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, pillow, laptop, bike. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-7, 0], [-1, -2], [-1, -4]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.633
threshold: 0.900
score: 0.633
evaluation_mode: default
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: 9ff68c1e426c4bd7)

✅ Evaluation Results
id: 9ff68c1e426c4bd7
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, pillow, suitcase, white chair, backpack. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[3, 0], [-7, 0], [7, -4], [-7, -4], [9, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.912
threshold: 0.900
score: 0.912
evaluation_mode: default
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 9ce88e9c1df16a31)

✅ Evaluation Results
id: 9ce88e9c1df16a31
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, wine. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['wine', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 36b3f8b4d004b955)

✅ Evaluation Results
id: 36b3f8b4d004b955
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, white chair. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['white chair', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 9eefbbaaede91b15)

✅ Evaluation Results
id: 9eefbbaaede91b15
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, laptop, pillow, shelf. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['pillow', 'laptop', 'shelf', 'airplane']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q3: RotEvaluationTask

📊 Task: RotDualEvaluationTask

Question 1 (ID: 4dca2fe8cca65e49)

✅ Evaluation Results
id: 4dca2fe8cca65e49
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: wine, laptop, shelf Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: RotDualEvaluationTask

Question 2 (ID: 8f5d22c4372c7657)

✅ Evaluation Results
id: 8f5d22c4372c7657
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: white chair, laptop, shelf Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotDualEvaluationTask

Question 3 (ID: 3594327599c02775)

✅ Evaluation Results
id: 3594327599c02775
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: pillow, laptop, shelf, airplane Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotDualEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: dfb33925c33ad150)

✅ Evaluation Results
id: dfb33925c33ad150
question: Still treat your initial position as origin (0, 0) You move to (0, -3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: a9cd391496e7f4bd)

✅ Evaluation Results
id: a9cd391496e7f4bd
question: Still treat your initial position as origin (0, 0) You move to (-2, -2) and face east. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 4bb34213337def71)

✅ Evaluation Results
id: 4bb34213337def71
question: Still treat your initial position as origin (0, 0) You move to (1, 0) and face south. What is the egocentric relation of bike? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 589844ce1a3db594)

✅ Evaluation Results
id: 589844ce1a3db594
question: You move to a new location and face north. You observe: airplane is at front-right, slightly far, facing backward; laptop is at front-left, near, facing backward; brown door is at front-left, slightly far, on left wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, -3]
final_pos: [10, 3]
final_ori: [0, 1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on left wall'}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: default
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: ccba734e7d8b0db2)

✅ Evaluation Results
id: ccba734e7d8b0db2
question: You move to a new location and face east. You observe: airplane is at front-slight-left, slightly far, facing right; laptop is at front, near, facing right; shelf is at front-slight-right, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-2, -2]
final_pos: [8, 4]
final_ori: [1, 0]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front', 'distance': 'near', 'orientation': 'facing right'}, {'name': 'shelf', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.702
raw_score: 0.702
score: 0.702
evaluation_mode: default
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 3663a671d8f461de)

✅ Evaluation Results
id: 3663a671d8f461de
question: You move to a new location and face south. You observe: bike is at front-right, slightly far, facing backward; laptop is at front-right, mid distance, facing forward; shelf is at front-left, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 0]
final_pos: [11, 6]
final_ori: [0, -1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'shelf', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: default
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (prompt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 3af22411dc8e4653)

✅ Evaluation Results
id: 3af22411dc8e4653
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: f2b0e3268c58b4c8)

✅ Evaluation Results
id: f2b0e3268c58b4c8
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: south, mid distance
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: ae731068ff074970)

✅ Evaluation Results
id: ae731068ff074970
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: east, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77dc57ad53ccff4c)

✅ Evaluation Results
id: 77dc57ad53ccff4c
question: Now you jump to airplane's direction, facing its direction. Describe where bike is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ba63e01f9f8cf08f)

✅ Evaluation Results
id: ba63e01f9f8cf08f
question: Now you jump to truck's direction, facing its direction. Describe where backpack is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: fe59923b2b52093d)

✅ Evaluation Results
id: fe59923b2b52093d
question: Now you jump to airplane's direction, facing its direction. Describe where shelf is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: db00fbb4ebb9f189)

✅ Evaluation Results
id: db00fbb4ebb9f189
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; shelf is front, mid distance; yellow door is front-left, mid distance, on left wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: airplane
final_pos: [13, 6]
final_ori: [0, -1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'shelf', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'yellow door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on left wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 1
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: dbd8ca2192fa7515)

✅ Evaluation Results
id: dbd8ca2192fa7515
question: Now you jump to an object's position, facing its direction. You observe that pillow is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: cap
final_pos: [1, 4]
final_ori: [0, 1]
final_observation: [{'name': 'pillow', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 2c823d1f2d940432)

✅ Evaluation Results
id: 2c823d1f2d940432
question: Now you jump to an object's position, facing its direction. You observe that brown door is front-left, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: white chair
final_pos: [3, 2]
final_ori: [1, 0]
final_observation: [{'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 6d169a70c94f49de)

✅ Evaluation Results
id: 6d169a70c94f49de
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-left, slightly far. 3. Rotate(90) 4. Among objects which are front-right, slightly far to you, you jump to the 2nd from left also farthest one. 5. Rotate(-180) After executing the actions, what is the ego relation of yellow door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6a9b2df21e9fa7d6)

✅ Evaluation Results
id: 6a9b2df21e9fa7d6
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, mid distance. 3. Among objects which are front-left, slightly far to you, you jump to the 2nd from left also farthest one. 4. Rotate(-180) After executing the actions, what is the ego relation of white chair relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: b48679bb04763dd4)

✅ Evaluation Results
id: b48679bb04763dd4
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-right, mid distance. 3. Rotate(-90) 4. Jump to the object at front, slightly far. After executing the actions, what is the ego relation of suitcase relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: ba3e02e16a5c87a1)

✅ Evaluation Results
id: ba3e02e16a5c87a1
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: suitcase is at front-left, slightly far, facing backward; truck is at front-left, mid distance, facing left; yellow door is at front-right, mid distance, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [15, 6]
final_ori: [0, -1]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['rotate', -90], ['jumpto', 'alarmclock'], ['rotate', 180]]
final_observation: [{'name': 'suitcase', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'yellow door', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [19.0, 6.0]
final_ori: [0, -1]
visible_match: False
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: acb07825c6116973)

✅ Evaluation Results
id: acb07825c6116973
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: airplane is at front-left, mid distance, facing backward; alarmclock is at front-right, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 4]
final_ori: [0, 1]
room_id: [1, 3]
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'initial_pos'], ['rotate', -90]]
final_observation: [{'name': 'airplane', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'alarmclock', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [14.0, 4.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: 3f3f07a01338a14c)

✅ Evaluation Results
id: 3f3f07a01338a14c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: alarmclock is at front, mid distance, facing right; truck is at front-left, mid distance, facing backward; yellow door is at front-slight-left, slightly far, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [19, 6]
final_ori: [-1, 0]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['jumpto', 'backpack'], ['rotate', 180]]
final_observation: [{'name': 'alarmclock', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'yellow door', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [19.0, 6.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 9c329788def30f4f)

✅ Evaluation Results
id: 9c329788def30f4f
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, laptop, pillow, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-1, -2], [-7, 0], [3, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.687
threshold: 0.900
score: 0.687
evaluation_mode: prompt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 9bdf383982e77bb0)

✅ Evaluation Results
id: 9bdf383982e77bb0
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, pillow, laptop, bike. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-7, 0], [-1, -2], [-1, -4]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.223
threshold: 0.900
score: 0.223
evaluation_mode: prompt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: 9ff68c1e426c4bd7)

✅ Evaluation Results
id: 9ff68c1e426c4bd7
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, pillow, suitcase, white chair, backpack. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[3, 0], [-7, 0], [7, -4], [-7, -4], [9, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.776
threshold: 0.900
score: 0.776
evaluation_mode: prompt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 9ce88e9c1df16a31)

✅ Evaluation Results
id: 9ce88e9c1df16a31
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, wine. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['wine', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 36b3f8b4d004b955)

✅ Evaluation Results
id: 36b3f8b4d004b955
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, white chair. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['white chair', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 9eefbbaaede91b15)

✅ Evaluation Results
id: 9eefbbaaede91b15
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, laptop, pillow, shelf. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['pillow', 'laptop', 'shelf', 'airplane']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: dfb33925c33ad150)

✅ Evaluation Results
id: dfb33925c33ad150
question: Still treat your initial position as origin (0, 0) You move to (0, -3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: a9cd391496e7f4bd)

✅ Evaluation Results
id: a9cd391496e7f4bd
question: Still treat your initial position as origin (0, 0) You move to (-2, -2) and face east. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 4bb34213337def71)

✅ Evaluation Results
id: 4bb34213337def71
question: Still treat your initial position as origin (0, 0) You move to (1, 0) and face south. What is the egocentric relation of bike? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 589844ce1a3db594)

✅ Evaluation Results
id: 589844ce1a3db594
question: You move to a new location and face north. You observe: airplane is at front-right, slightly far, facing backward; laptop is at front-left, near, facing backward; brown door is at front-left, slightly far, on left wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, -3]
final_pos: [10, 3]
final_ori: [0, 1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on left wall'}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.717
raw_score: 0.717
score: 0.717
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: ccba734e7d8b0db2)

✅ Evaluation Results
id: ccba734e7d8b0db2
question: You move to a new location and face east. You observe: airplane is at front-slight-left, slightly far, facing right; laptop is at front, near, facing right; shelf is at front-slight-right, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-2, -2]
final_pos: [8, 4]
final_ori: [1, 0]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front', 'distance': 'near', 'orientation': 'facing right'}, {'name': 'shelf', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.702
raw_score: 0.702
score: 0.702
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 3663a671d8f461de)

✅ Evaluation Results
id: 3663a671d8f461de
question: You move to a new location and face south. You observe: bike is at front-right, slightly far, facing backward; laptop is at front-right, mid distance, facing forward; shelf is at front-left, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 0]
final_pos: [11, 6]
final_ori: [0, -1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'shelf', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.243
raw_score: 0.243
score: 0.243
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_gt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 3af22411dc8e4653)

✅ Evaluation Results
id: 3af22411dc8e4653
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: f2b0e3268c58b4c8)

✅ Evaluation Results
id: f2b0e3268c58b4c8
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: south, mid distance
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: ae731068ff074970)

✅ Evaluation Results
id: ae731068ff074970
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: east, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77dc57ad53ccff4c)

✅ Evaluation Results
id: 77dc57ad53ccff4c
question: Now you jump to airplane's direction, facing its direction. Describe where bike is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ba63e01f9f8cf08f)

✅ Evaluation Results
id: ba63e01f9f8cf08f
question: Now you jump to truck's direction, facing its direction. Describe where backpack is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: fe59923b2b52093d)

✅ Evaluation Results
id: fe59923b2b52093d
question: Now you jump to airplane's direction, facing its direction. Describe where shelf is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: db00fbb4ebb9f189)

✅ Evaluation Results
id: db00fbb4ebb9f189
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; shelf is front, mid distance; yellow door is front-left, mid distance, on left wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: airplane
final_pos: [13, 6]
final_ori: [0, -1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'shelf', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'yellow door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on left wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 1
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: dbd8ca2192fa7515)

✅ Evaluation Results
id: dbd8ca2192fa7515
question: Now you jump to an object's position, facing its direction. You observe that pillow is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: cap
final_pos: [1, 4]
final_ori: [0, 1]
final_observation: [{'name': 'pillow', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 2c823d1f2d940432)

✅ Evaluation Results
id: 2c823d1f2d940432
question: Now you jump to an object's position, facing its direction. You observe that brown door is front-left, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: white chair
final_pos: [3, 2]
final_ori: [1, 0]
final_observation: [{'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 6d169a70c94f49de)

✅ Evaluation Results
id: 6d169a70c94f49de
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-left, slightly far. 3. Rotate(90) 4. Among objects which are front-right, slightly far to you, you jump to the 2nd from left also farthest one. 5. Rotate(-180) After executing the actions, what is the ego relation of yellow door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6a9b2df21e9fa7d6)

✅ Evaluation Results
id: 6a9b2df21e9fa7d6
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, mid distance. 3. Among objects which are front-left, slightly far to you, you jump to the 2nd from left also farthest one. 4. Rotate(-180) After executing the actions, what is the ego relation of white chair relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: b48679bb04763dd4)

✅ Evaluation Results
id: b48679bb04763dd4
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-right, mid distance. 3. Rotate(-90) 4. Jump to the object at front, slightly far. After executing the actions, what is the ego relation of suitcase relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: ba3e02e16a5c87a1)

✅ Evaluation Results
id: ba3e02e16a5c87a1
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: suitcase is at front-left, slightly far, facing backward; truck is at front-left, mid distance, facing left; yellow door is at front-right, mid distance, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [15, 6]
final_ori: [0, -1]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['rotate', -90], ['jumpto', 'alarmclock'], ['rotate', 180]]
final_observation: [{'name': 'suitcase', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'yellow door', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
error: target_not_visible
score: 0
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: acb07825c6116973)

✅ Evaluation Results
id: acb07825c6116973
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: airplane is at front-left, mid distance, facing backward; alarmclock is at front-right, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 4]
final_ori: [0, 1]
room_id: [1, 3]
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'initial_pos'], ['rotate', -90]]
final_observation: [{'name': 'airplane', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'alarmclock', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [14.0, 4.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: 3f3f07a01338a14c)

✅ Evaluation Results
id: 3f3f07a01338a14c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: alarmclock is at front, mid distance, facing right; truck is at front-left, mid distance, facing backward; yellow door is at front-slight-left, slightly far, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [19, 6]
final_ori: [-1, 0]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['jumpto', 'backpack'], ['rotate', 180]]
final_observation: [{'name': 'alarmclock', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'yellow door', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [19.0, 6.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 9c329788def30f4f)

✅ Evaluation Results
id: 9c329788def30f4f
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, laptop, pillow, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-1, -2], [-7, 0], [3, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 9bdf383982e77bb0)

✅ Evaluation Results
id: 9bdf383982e77bb0
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, pillow, laptop, bike. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-7, 0], [-1, -2], [-1, -4]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: 9ff68c1e426c4bd7)

✅ Evaluation Results
id: 9ff68c1e426c4bd7
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, pillow, suitcase, white chair, backpack. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[3, 0], [-7, 0], [7, -4], [-7, -4], [9, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 9ce88e9c1df16a31)

✅ Evaluation Results
id: 9ce88e9c1df16a31
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, wine. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['wine', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 36b3f8b4d004b955)

✅ Evaluation Results
id: 36b3f8b4d004b955
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, white chair. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['white chair', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 9eefbbaaede91b15)

✅ Evaluation Results
id: 9eefbbaaede91b15
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, laptop, pillow, shelf. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['pillow', 'laptop', 'shelf', 'airplane']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: dfb33925c33ad150)

✅ Evaluation Results
id: dfb33925c33ad150
question: Still treat your initial position as origin (0, 0) You move to (0, -3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: a9cd391496e7f4bd)

✅ Evaluation Results
id: a9cd391496e7f4bd
question: Still treat your initial position as origin (0, 0) You move to (-2, -2) and face east. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 4bb34213337def71)

✅ Evaluation Results
id: 4bb34213337def71
question: Still treat your initial position as origin (0, 0) You move to (1, 0) and face south. What is the egocentric relation of bike? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 589844ce1a3db594)

✅ Evaluation Results
id: 589844ce1a3db594
question: You move to a new location and face north. You observe: airplane is at front-right, slightly far, facing backward; laptop is at front-left, near, facing backward; brown door is at front-left, slightly far, on left wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, -3]
final_pos: [10, 3]
final_ori: [0, 1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on left wall'}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: ccba734e7d8b0db2)

✅ Evaluation Results
id: ccba734e7d8b0db2
question: You move to a new location and face east. You observe: airplane is at front-slight-left, slightly far, facing right; laptop is at front, near, facing right; shelf is at front-slight-right, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-2, -2]
final_pos: [8, 4]
final_ori: [1, 0]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front', 'distance': 'near', 'orientation': 'facing right'}, {'name': 'shelf', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 3663a671d8f461de)

✅ Evaluation Results
id: 3663a671d8f461de
question: You move to a new location and face south. You observe: bike is at front-right, slightly far, facing backward; laptop is at front-right, mid distance, facing forward; shelf is at front-left, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 0]
final_pos: [11, 6]
final_ori: [0, -1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'shelf', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_model_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 3af22411dc8e4653)

✅ Evaluation Results
id: 3af22411dc8e4653
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to laptop. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: f2b0e3268c58b4c8)

✅ Evaluation Results
id: f2b0e3268c58b4c8
question: You return to your starting position and face north. From a Top-Down map, describe where white chair is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: south, mid distance
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: ae731068ff074970)

✅ Evaluation Results
id: ae731068ff074970
question: You return to your starting position and face north. From a Top-Down map, describe where airplane is relative to pillow. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: east, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77dc57ad53ccff4c)

✅ Evaluation Results
id: 77dc57ad53ccff4c
question: Now you jump to airplane's direction, facing its direction. Describe where bike is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: ba63e01f9f8cf08f)

✅ Evaluation Results
id: ba63e01f9f8cf08f
question: Now you jump to truck's direction, facing its direction. Describe where backpack is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: fe59923b2b52093d)

✅ Evaluation Results
id: fe59923b2b52093d
question: Now you jump to airplane's direction, facing its direction. Describe where shelf is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: db00fbb4ebb9f189)

✅ Evaluation Results
id: db00fbb4ebb9f189
question: Now you jump to an object's position, facing its direction. You observe that bike is front-right, slightly far, facing backward; shelf is front, mid distance; yellow door is front-left, mid distance, on left wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: airplane
final_pos: [13, 6]
final_ori: [0, -1]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'shelf', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'yellow door', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'on left wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 1
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: dbd8ca2192fa7515)

✅ Evaluation Results
id: dbd8ca2192fa7515
question: Now you jump to an object's position, facing its direction. You observe that pillow is front-right, mid distance. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: cap
final_pos: [1, 4]
final_ori: [0, 1]
final_observation: [{'name': 'pillow', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': None}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 2c823d1f2d940432)

✅ Evaluation Results
id: 2c823d1f2d940432
question: Now you jump to an object's position, facing its direction. You observe that brown door is front-left, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: white chair
final_pos: [3, 2]
final_ori: [1, 0]
final_observation: [{'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
airplane: [13.0, 6.0]
cap: [1.0, 4.0]
alarmclock: [15.0, 6.0]
bike: [9.0, 2.0]
white chair: [3.0, 2.0]
suitcase: [17.0, 2.0]
laptop: [9.0, 4.0]
shelf: [13.0, 2.0]
wine: [1.0, 2.0]
truck: [17.0, 4.0]
pillow: [3.0, 6.0]
backpack: [19.0, 6.0]
brown door: [7.0, 6.0]
yellow door: [14.0, 4.0]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
room_id: 2
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 6d169a70c94f49de)

✅ Evaluation Results
id: 6d169a70c94f49de
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-left, slightly far. 3. Rotate(90) 4. Among objects which are front-right, slightly far to you, you jump to the 2nd from left also farthest one. 5. Rotate(-180) After executing the actions, what is the ego relation of yellow door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-slight-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6a9b2df21e9fa7d6)

✅ Evaluation Results
id: 6a9b2df21e9fa7d6
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, mid distance. 3. Among objects which are front-left, slightly far to you, you jump to the 2nd from left also farthest one. 4. Rotate(-180) After executing the actions, what is the ego relation of white chair relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: b48679bb04763dd4)

✅ Evaluation Results
id: b48679bb04763dd4
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-right, mid distance. 3. Rotate(-90) 4. Jump to the object at front, slightly far. After executing the actions, what is the ego relation of suitcase relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: ba3e02e16a5c87a1)

✅ Evaluation Results
id: ba3e02e16a5c87a1
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: suitcase is at front-left, slightly far, facing backward; truck is at front-left, mid distance, facing left; yellow door is at front-right, mid distance, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [15, 6]
final_ori: [0, -1]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['rotate', -90], ['jumpto', 'alarmclock'], ['rotate', 180]]
final_observation: [{'name': 'suitcase', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'yellow door', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [19.0, 6.0]
final_ori: [0, -1]
visible_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: acb07825c6116973)

✅ Evaluation Results
id: acb07825c6116973
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: airplane is at front-left, mid distance, facing backward; alarmclock is at front-right, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [14, 4]
final_ori: [0, 1]
room_id: [1, 3]
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'initial_pos'], ['rotate', -90]]
final_observation: [{'name': 'airplane', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'alarmclock', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [14.0, 4.0]
final_ori: [0, 1]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: 3f3f07a01338a14c)

✅ Evaluation Results
id: 3f3f07a01338a14c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: alarmclock is at front, mid distance, facing right; truck is at front-left, mid distance, facing backward; yellow door is at front-slight-left, slightly far, on front wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [19, 6]
final_ori: [-1, 0]
room_id: 3
init_pos: [10, 6]
init_ori: [0, 1]
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
minimal_plan: [['rotate', 90], ['jumpto', 'yellow door'], ['jumpto', 'backpack'], ['rotate', 180]]
final_observation: [{'name': 'alarmclock', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'yellow door', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'on front wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [19.0, 6.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 9c329788def30f4f)

✅ Evaluation Results
id: 9c329788def30f4f
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, laptop, pillow, airplane. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-1, -2], [-7, 0], [3, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.503
threshold: 0.900
score: 0.503
evaluation_mode: use_model_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: 9bdf383982e77bb0)

✅ Evaluation Results
id: 9bdf383982e77bb0
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: white chair, pillow, laptop, bike. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, -4], [-7, 0], [-1, -2], [-1, -4]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.549
threshold: 0.900
score: 0.549
evaluation_mode: use_model_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: 9ff68c1e426c4bd7)

✅ Evaluation Results
id: 9ff68c1e426c4bd7
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: airplane, pillow, suitcase, white chair, backpack. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[3, 0], [-7, 0], [7, -4], [-7, -4], [9, 0]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.747
threshold: 0.900
score: 0.747
evaluation_mode: use_model_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 9ce88e9c1df16a31)

✅ Evaluation Results
id: 9ce88e9c1df16a31
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, wine. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['wine', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: 36b3f8b4d004b955)

✅ Evaluation Results
id: 36b3f8b4d004b955
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: laptop, shelf, white chair. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['white chair', 'laptop', 'shelf']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 9eefbbaaede91b15)

✅ Evaluation Results
id: 9eefbbaaede91b15
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: airplane, laptop, pillow, shelf. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['pillow', 'laptop', 'shelf', 'airplane']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: dfb33925c33ad150)

✅ Evaluation Results
id: dfb33925c33ad150
question: Still treat your initial position as origin (0, 0) You move to (0, -3) and face north. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: a9cd391496e7f4bd)

✅ Evaluation Results
id: a9cd391496e7f4bd
question: Still treat your initial position as origin (0, 0) You move to (-2, -2) and face east. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-slight-left, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 4bb34213337def71)

✅ Evaluation Results
id: 4bb34213337def71
question: Still treat your initial position as origin (0, 0) You move to (1, 0) and face south. What is the egocentric relation of bike? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 589844ce1a3db594)

✅ Evaluation Results
id: 589844ce1a3db594
question: You move to a new location and face north. You observe: airplane is at front-right, slightly far, facing backward; laptop is at front-left, near, facing backward; brown door is at front-left, slightly far, on left wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [0, -3]
final_pos: [10, 3]
final_ori: [0, 1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'on left wall'}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.513
raw_score: 0.513
score: 0.513
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: ccba734e7d8b0db2)

✅ Evaluation Results
id: ccba734e7d8b0db2
question: You move to a new location and face east. You observe: airplane is at front-slight-left, slightly far, facing right; laptop is at front, near, facing right; shelf is at front-slight-right, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-2, -2]
final_pos: [8, 4]
final_ori: [1, 0]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'airplane', 'direction': 'front-slight-left', 'distance': 'slightly far', 'orientation': 'facing right'}, {'name': 'laptop', 'direction': 'front', 'distance': 'near', 'orientation': 'facing right'}, {'name': 'shelf', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.607
raw_score: 0.607
score: 0.607
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 3663a671d8f461de)

✅ Evaluation Results
id: 3663a671d8f461de
question: You move to a new location and face south. You observe: bike is at front-right, slightly far, facing backward; laptop is at front-right, mid distance, facing forward; shelf is at front-left, slightly far Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 0]
final_pos: [11, 6]
final_ori: [0, -1]
room_id: 1
object_positions:
airplane: [13, 6]
cap: [1, 4]
alarmclock: [15, 6]
bike: [9, 2]
white chair: [3, 2]
suitcase: [17, 2]
laptop: [9, 4]
shelf: [13, 2]
wine: [1, 2]
truck: [17, 4]
pillow: [3, 6]
backpack: [19, 6]
brown door: [7, 6]
yellow door: [14, 4]
object_orientations:
airplane: [0, -1]
cap: [0, 1]
alarmclock: [0, 1]
bike: [0, 1]
white chair: [1, 0]
suitcase: [0, 1]
laptop: [0, -1]
truck: [1, 0]
backpack: [0, 1]
brown door: [1, 0]
yellow door: [1, 0]
final_observation: [{'name': 'bike', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing backward'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing forward'}, {'name': 'shelf', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': None}]
gate_info:
brown door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
yellow door:
room_ids: [1, 3]
ori_by_room:
1: [-1, 0]
3: [1, 0]
object_rooms:
airplane: 1
cap: 2
alarmclock: 3
bike: 1
white chair: 2
suitcase: 3
laptop: 1
shelf: 1
wine: 2
truck: 3
pillow: 2
backpack: 3
brown door: [2, 1]
yellow door: [1, 3]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.243
raw_score: 0.243
score: 0.243
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask