Model: gpt-5.2

sample_run04

Select Configuration:

📊 Sample Metrics

🔍 Exploration

last_node_coverage: 0.643
last_edge_coverage: 0.439
n_exploration_steps: 20
action_counts:
move: 5
rotate: 15
return: 0
observe: 19
term: 1
forced_term: 0
query: 0
action_cost: 19
final_information_gain: 0.643
action_fail_ratio: 0
valid_action_ratio: 1
false_belief_steps: 11
false_belief_f1: 0.750
false_belief_f1_position: 1
false_belief_f1_facing: 0.500
false_belief_action_cost: 10
false_belief_action_cost_after_seen: 4

✅ Evaluation

overall:
n_total: 27
total_score: 11.782
avg_accuracy: 0.436
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
PovEvaluationTask:
n_total: 3
task_score: 1.500
avg_accuracy: 0.500
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Action2ViewEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
View2ActionTextEvaluationTask:
n_total: 3
task_score: 0
avg_accuracy: 0
AlloMappingEvaluationTask:
n_total: 3
task_score: 1.595
avg_accuracy: 0.532
RotEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Location2ViewEvaluationTask:
n_total: 3
task_score: 0.500
avg_accuracy: 0.167
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.187
avg_accuracy: 0.729

✅ Evaluation (prompt_cogmap)

overall:
n_total: 27
total_score: 11.091
avg_accuracy: 0.411
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
PovEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Action2ViewEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
View2ActionTextEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
AlloMappingEvaluationTask:
n_total: 3
task_score: 0.884
avg_accuracy: 0.295
RotEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Location2ViewEvaluationTask:
n_total: 3
task_score: 0
avg_accuracy: 0
View2LocationTextEvaluationTask:
n_total: 3
task_score: 1.207
avg_accuracy: 0.402

✅ Evaluation (use_gt_cogmap)

overall:
n_total: 27
total_score: 24
avg_accuracy: 0.889
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
PovEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Action2ViewEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
View2ActionTextEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
AlloMappingEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
RotEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1
Location2ViewEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
View2LocationTextEvaluationTask:
n_total: 3
task_score: 3
avg_accuracy: 1

✅ Evaluation (use_model_cogmap)

overall:
n_total: 27
total_score: 9.278
avg_accuracy: 0.344
per_task:
DirectionEvaluationTask:
n_total: 3
task_score: 0.500
avg_accuracy: 0.167
PovEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
BackwardPovTextEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
Action2ViewEvaluationTask:
n_total: 3
task_score: 1
avg_accuracy: 0.333
View2ActionTextEvaluationTask:
n_total: 3
task_score: 0
avg_accuracy: 0
AlloMappingEvaluationTask:
n_total: 3
task_score: 0.592
avg_accuracy: 0.197
RotEvaluationTask:
n_total: 3
task_score: 2
avg_accuracy: 0.667
Location2ViewEvaluationTask:
n_total: 3
task_score: 0
avg_accuracy: 0
View2LocationTextEvaluationTask:
n_total: 3
task_score: 2.187
avg_accuracy: 0.729

🧠 Cognitive Map

exploration:
error:
local_vs_gt_local_avg:
dir: 0.719
facing: 1
pos: 0.869
overall: 0.863
global_vs_gt_global_avg:
dir: 0.803
facing: 0.906
pos: 0.847
overall: 0.852
agent_vs_gt_agent_avg:
dir: 0.600
facing: 0.900
pos: 0.915
overall: 0.805
newly_observed_vs_gt_local_avg:
dir: 0.475
facing: 1
pos: 0.856
overall: 0.777
correctness:
last_global_vs_gt_full:
dir: 0.367
facing: 0.667
pos: 0.510
overall: 0.514
consistency:
local_vs_global_avg:
dir: 0.642
facing: 0.984
pos: 0.856
overall: 0.827
position_update_avg: 0.683
facing_update_avg: 0.897
position_stability_avg: 0.683
facing_stability_avg: 0.897
fog_probe:
f1_avg: 0.600
precision_avg: 0.503
recall_avg: 0.816
cogmap_fb:
metrics:
changed:
dir: None
pos: 0.812
facing: 0
overall: None
retention:
dir: None
pos: 0.198
facing: 0
overall: None
unchanged:
dir: 0.559
facing: 0.550
pos: 0.703
overall: 0.604
inertia: -0.000
inertia_list: [-8.424746204273142e-08]
unchanged_retention:
dir: None
pos: 0.783
facing: 0.571
overall: None
unchanged_retention_minus_retention:
pos: 0.936
facing: 1
unchanged_exploration:
dir: 0.821
facing: 1
pos: 0.769
overall: 0.864

🧭 False Belief CogMap

inertia: -0.000
changed:
dir: None
pos: 0.812
facing: 0
overall: None
retention:
dir: None
pos: 0.198
facing: 0
overall: None
unchanged:
dir: 0.559
facing: 0.550
pos: 0.703
overall: 0.604
unchanged_retention:
dir: None
pos: 0.783
facing: 0.571
overall: None
unchanged_retention_minus_retention:
pos: 0.936
facing: 1
unchanged_exploration:
dir: 0.821
facing: 1
pos: 0.769
overall: 0.864

📊 Performance Charts

Cognitive Map (Update)
Global Update Metrics
Cognitive Map (Full)
Global Full Metrics
Cognitive Map (Self-Tracking)
Global Self-Tracking Metrics
FB CogMap (Unchanged)
False Belief CogMap Unchanged per Turn
Fog Probe F1
Fog Probe F1 per Turn
Fog Probe Precision
Fog Probe Precision per Turn
Fog Probe Recall
Fog Probe Recall per Turn
Position Update
Position Update per Turn
Facing Update
Facing Update per Turn
Position Stability
Position Stability per Turn
Facing Stability
Facing Stability per Turn

🌍 Exploration Phase

🔄 Turn 1

💬 Assistant Action
Actions: [Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        1,
        3
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -3,
        5
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        1,
        3
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -3,
        5
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
###############
#......#......#
#......#....DB#
#......#...C..#
#......+.F..*.#
#......#..A.E.#
#......#......#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, E, F
🎯 Ground Truth: E, F, A
🧠 Cognitive Map Metrics
Global:
dir: 0.833
facing: 1
pos: 0.860
overall: 0.898
Global (Full):
dir: 0.042
facing: 0.250
pos: 0.172
overall: 0.155
Local:
dir: 0.667
facing: 1
pos: 0.831
overall: 0.833
Local (Newly):
dir: 0.667
facing: 1
pos: 0.831
overall: 0.833
Fog Probe:
precision: 1
recall: 1
overall: 1
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 1
action_counts:
move: 0
rotate: 0
return: 0
observe: 1
term: 0
forced_term: 0
query: 0
information_gain: 0.111
reward: -0.100
is_done: False
is_valid_action: True
Current state
State at Turn 1

🔄 Turn 2

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#....B.#
#......#....A.#
#......#.....E#
#......+CD..*.#
#......#......#
#......#.F....#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: C, D, F
🧠 Cognitive Map Metrics
Global:
dir: 1
facing: 1
pos: 0.899
overall: 0.966
Global (Full):
dir: 0.050
facing: 0.250
pos: 0.180
overall: 0.160
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.143
edge_coverage: 0.049
is_action_fail: False
step: 2
action_counts:
move: 0
rotate: 1
return: 0
observe: 2
term: 0
forced_term: 0
query: 0
information_gain: 0.111
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 Turn 3

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      0,
      0
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -1,
        3
      ]
    },
    "brown door": {
      "position": [
        1,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "plant": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -1,
        3
      ]
    },
    "brown door": {
      "position": [
        1,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "plant": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      1,
      3
    ],
    "facing": "north"
  }
}
🗺️ Symbolic Fog Map
###############
#......#.C....#
#......#.....D#
#......#......#
#......+.F.A*.#
#......#....B.#
#......#.E....#
###########+###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: C, D, E
🎯 Ground Truth: A, F, E
🧠 Cognitive Map Metrics
Global:
dir: 0.867
facing: 1
pos: 0.877
overall: 0.915
Global (Full):
dir: 0.108
facing: 0.250
pos: 0.292
overall: 0.217
Local:
dir: 0.333
facing: 1
pos: 0.912
overall: 0.748
Local (Newly):
dir: 0.333
facing: 1
pos: 0.912
overall: 0.748
Fog Probe:
precision: 0.333
recall: 0.333
overall: 0.333
📈 Turn Metrics
node_coverage: 0.286
edge_coverage: 0.098
is_action_fail: False
step: 3
action_counts:
move: 0
rotate: 2
return: 0
observe: 3
term: 0
forced_term: 0
query: 0
information_gain: 0.240
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 Turn 4

💬 Assistant Action
Actions: [JumpTo(brown door), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -3
    ]
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        2,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        2,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#.E....#
#......+.....K#
#......#B..C..#
#......#J.D...#
###########*###
######...F..###
######..L.A.###
######G.....###
######......###
######.....H###
######.I....###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, B, C, D, E, F, G, H, I, J, K, L
🎯 Ground Truth: J, E, B, G, F, L
🧠 Cognitive Map Metrics
Global:
dir: 0.867
facing: 1
pos: 0.891
overall: 0.919
Global (Full):
dir: 0.325
facing: 0.583
pos: 0.535
overall: 0.481
Local:
dir: 0.900
facing: 1
pos: 0.912
overall: 0.937
Local (Newly):
dir: 0.900
facing: 1
pos: 0.912
overall: 0.937
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.571
edge_coverage: 0.195
is_action_fail: False
step: 4
action_counts:
move: 1
rotate: 2
return: 0
observe: 4
term: 0
forced_term: 0
query: 0
information_gain: 0.485
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 Turn 5

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -2
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -2,
      -2
    ]
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "green chair": {
    "position": [
      -3,
      -5
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -3,
      -7
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -5,
      -5
    ],
    "facing": "north"
  },
  "television": {
    "position": [
      -6,
      -4
    ],
    "facing": "south"
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -5,
      5
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -6,
      4
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        1,
        6
      ],
      "facing": "+x"
    },
    "truck": {
      "position": [
        -2,
        6
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -1,
        6
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "teddybear": {
    "position": [
      -2,
      6
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      2,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "scooter": {
      "position": [
        1,
        6
      ],
      "facing": "+x"
    },
    "truck": {
      "position": [
        -2,
        6
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -1,
        6
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "truck": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  }
}
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#..D...#
#......+...I.C#
#......#E.....#
#......#HF....#
###########*###
######......###
######J.L...###
######.B....###
######......###
######......###
######.KG..A###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: B, J, L
🎯 Ground Truth: E, F, H, B, J, L
🧠 Cognitive Map Metrics
Global:
dir: 0.582
facing: 0.500
pos: 0.687
overall: 0.590
Global (Full):
dir: 0.267
facing: 0.333
pos: 0.458
overall: 0.353
Local:
dir: 0.500
facing: 1
pos: 0.831
overall: 0.777
Local (Newly):
dir: 0
facing: 1
pos: 0.769
overall: 0.590
Fog Probe:
precision: 1
recall: 0.500
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.268
is_action_fail: False
step: 5
action_counts:
move: 1
rotate: 3
return: 0
observe: 5
term: 0
forced_term: 0
query: 0
information_gain: 0.588
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 Turn 6

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -3
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -2,
      -3
    ]
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ]
  },
  "green chair": {
    "position": [
      -3,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -3,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -4,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -2,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "plant": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -2,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#..J..C#
#......#......#
#......#H.....#
#......+......#
#......#D.....#
#......#IF....#
###########*###
######..B...###
######A.....###
######.G....###
######.....L###
######E.....###
######.K....###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, C, D, E, F, G, H, I, J, K, L
🎯 Ground Truth: D, I, F, B, A, G
🧠 Cognitive Map Metrics
Global:
dir: 0.673
facing: 1
pos: 0.831
overall: 0.835
Global (Full):
dir: 0.308
facing: 0.667
pos: 0.554
overall: 0.510
Local:
dir: 1
facing: 1
pos: 0.831
overall: 0.944
Local (Newly):
(none)
Fog Probe:
precision: 0.455
recall: 0.833
overall: 0.588
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.293
is_action_fail: False
step: 6
action_counts:
move: 1
rotate: 4
return: 0
observe: 6
term: 0
forced_term: 0
query: 0
information_gain: 0.602
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 Turn 7

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -3
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -2,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      4
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "green chair": {
    "position": [
      -2,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      -9
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -4,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        2,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        4
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        2,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        3,
        5
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#...ALJ#
#......#......#
#......#......#
#......+......#
#......#F.....#
#......#GB....#
###########*###
######C.DI..###
######......###
######....E.###
######...K..###
######.....H###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, L, J, C, D, I, E, K, H
🎯 Ground Truth: B, G, F, D, I, C
🧠 Cognitive Map Metrics
Global:
dir: 0.745
facing: 1
pos: 0.856
overall: 0.867
Global (Full):
dir: 0.342
facing: 0.667
pos: 0.571
overall: 0.526
Local:
dir: 0.900
facing: 1
pos: 0.912
overall: 0.937
Local (Newly):
(none)
Fog Probe:
precision: 0.333
recall: 0.500
overall: 0.400
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.293
is_action_fail: False
step: 7
action_counts:
move: 1
rotate: 5
return: 0
observe: 7
term: 0
forced_term: 0
query: 0
information_gain: 0.602
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 Turn 8

💬 Assistant Action
Actions: [JumpTo(green chair), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "plant": {
    "position": [
      1,
      -2
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        0,
        1
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      0,
      2
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        0,
        1
      ],
      "facing": "+y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#...B..#
#......#......#
#......#......#
#......+......#
#......#LG..D.#
#......#AI....#
###########+###
######......###
######CHE...###
######...J..###
######..K.F*###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H, I, J, K, L
🤖 Predicted: A, B, C, D, E, G, H, I, J, L
🎯 Ground Truth: L, A, I, E, C, H
🧠 Cognitive Map Metrics
Global:
dir: 0.964
facing: 1
pos: 0.943
overall: 0.969
Global (Full):
dir: 0.442
facing: 0.667
pos: 0.629
overall: 0.579
Local:
dir: 1
facing: 1
pos: 0.877
overall: 0.959
Local (Newly):
(none)
Fog Probe:
precision: 0.600
recall: 1
overall: 0.750
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.317
is_action_fail: False
step: 8
action_counts:
move: 2
rotate: 5
return: 0
observe: 8
term: 0
forced_term: 0
query: 0
information_gain: 0.602
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 Turn 9

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      1,
      -6
    ],
    "facing": "west"
  },
  "brown door": {
    "position": [
      1,
      -2
    ]
  },
  "plant": {
    "position": [
      3,
      -2
    ]
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -1,
      5
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      1,
      -7
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -1,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -3,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "toilet": {
      "position": [
        0,
        1
      ],
      "facing": "-x"
    },
    "television": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      0,
      2
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -2,
      4
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "toilet": {
      "position": [
        0,
        1
      ],
      "facing": "-x"
    },
    "television": {
      "position": [
        -1,
        5
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#...H..#
#......#......#
#......#E.....#
#......+C.....#
#......#D.....#
#......#BA....#
###########+###
######...F..###
######......###
######......###
######.....*###
######..G...###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F, G, H
🤖 Predicted: A, B, C, D, E, F, G, H
🎯 Ground Truth: D, B, A, F
🧠 Cognitive Map Metrics
Global:
dir: 0.782
facing: 1
pos: 0.738
overall: 0.840
Global (Full):
dir: 0.358
facing: 0.667
pos: 0.492
overall: 0.506
Local:
dir: 0.333
facing: 1
pos: 0.852
overall: 0.728
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 9
action_counts:
move: 2
rotate: 6
return: 0
observe: 9
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 9
Current state
State at Turn 9

🔄 Turn 10

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "plant": {
    "position": [
      1,
      -2
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "brown door": {
    "position": [
      0,
      4
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "brown door": {
      "position": [
        0,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#E.....#
#......+.AB...#
#......#F.....#
#......#CD....#
###########+###
######......###
######......###
######......###
######.....*###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: F, C, D
🧠 Cognitive Map Metrics
Global:
dir: 0.945
facing: 1
pos: 0.903
overall: 0.950
Global (Full):
dir: 0.433
facing: 0.667
pos: 0.602
overall: 0.567
Local:
dir: 1
facing: 1
pos: 0.877
overall: 0.959
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 10
action_counts:
move: 2
rotate: 7
return: 0
observe: 10
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 10
Current state
State at Turn 10

🔄 Turn 11

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -6
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -4,
      2
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -2,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#......#
#......+C..B..#
#......#F.....#
#......#AE...D#
###########+###
######......###
######......###
######......###
######.....*###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: E, A, F
🧠 Cognitive Map Metrics
Global:
dir: 0.818
facing: 0.875
pos: 0.866
overall: 0.853
Global (Full):
dir: 0.375
facing: 0.583
pos: 0.578
overall: 0.512
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 11
action_counts:
move: 2
rotate: 8
return: 0
observe: 11
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 11
Current state
State at Turn 11

🔄 Turn 12

💬 Assistant Action
Actions: [Rotate(-90), JumpTo(brown door), Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -2,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        3
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        3,
        5
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        4,
        4
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        3
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        3,
        5
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        4,
        4
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#.D....#
#......#......#
#......+..F...#
#......#E.....#
#......#BA.C..#
###########*###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: D, E, F
🎯 Ground Truth: A, E, B
🧠 Cognitive Map Metrics
Global:
dir: 0.836
facing: 1
pos: 0.852
overall: 0.896
Global (Full):
dir: 0.383
facing: 0.667
pos: 0.568
overall: 0.539
Local:
dir: 0.500
facing: 1
pos: 0.841
overall: 0.780
Local (Newly):
(none)
Fog Probe:
precision: 0.333
recall: 0.333
overall: 0.333
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 12
action_counts:
move: 3
rotate: 10
return: 0
observe: 12
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 12
Current state
State at Turn 12

🔄 Turn 13

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -3
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -2,
      -3
    ]
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -2,
      -7
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -2,
      -9
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -8
    ],
    "facing": "west"
  },
  "television": {
    "position": [
      -4,
      -8
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        -3,
        5
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -2,
        6
      ],
      "facing": "+x"
    },
    "scooter": {
      "position": [
        2,
        6
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "teddybear": {
    "position": [
      -2,
      6
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "scooter": {
    "position": [
      2,
      6
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "truck": {
      "position": [
        -3,
        5
      ],
      "facing": "+x"
    },
    "teddybear": {
      "position": [
        -2,
        6
      ],
      "facing": "+x"
    },
    "scooter": {
      "position": [
        2,
        6
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#......#
#......+ED....#
#......#B.....#
#......#FCA...#
###########*###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: D, E
🎯 Ground Truth: C, B, F
🧠 Cognitive Map Metrics
Global:
dir: 0.600
facing: 0.500
pos: 0.852
overall: 0.651
Global (Full):
dir: 0.275
facing: 0.333
pos: 0.568
overall: 0.392
Local:
dir: 0.667
facing: 1
pos: 0.899
overall: 0.855
Local (Newly):
(none)
Fog Probe:
precision: 0
recall: 0
overall: 0
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 13
action_counts:
move: 3
rotate: 11
return: 0
observe: 13
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 13
Current state
State at Turn 13

🔄 Turn 14

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -2
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -2
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -4,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -4,
      2
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -1
    ]
  },
  "green chair": {
    "position": [
      -2,
      -5
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -4,
      -5
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -6,
      -7
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -1,
        3
      ]
    }
  }
}
🎯 Ground Truth
{
  "plant": {
    "position": [
      -1,
      2
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "plant": {
      "position": [
        -1,
        3
      ]
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#...A..#
#......+......#
#......#C..B..#
#......#DEF...#
###########*###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: E, D, C
🧠 Cognitive Map Metrics
Global:
dir: 0.782
facing: 1
pos: 0.806
overall: 0.863
Global (Full):
dir: 0.358
facing: 0.667
pos: 0.538
overall: 0.521
Local:
dir: 0
facing: 1
pos: 0.877
overall: 0.626
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 14
action_counts:
move: 3
rotate: 12
return: 0
observe: 14
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 14
Current state
State at Turn 14

🔄 Turn 15

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -3,
      -8
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -7
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -1,
      -3
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        3
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        4,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        5,
        3
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      2,
      4
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      0,
      6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      4,
      6
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      0,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "green chair": {
      "position": [
        0,
        3
      ],
      "facing": "-x"
    },
    "cap": {
      "position": [
        0,
        6
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        4,
        4
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        5,
        3
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#.A....#
#......#......#
#......+.B..E.#
#......#F.....#
#......#CD....#
###########*###
######......###
######......###
######......###
######......###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: D, F, C
🧠 Cognitive Map Metrics
Global:
dir: 0.800
facing: 0.875
pos: 0.866
overall: 0.847
Global (Full):
dir: 0.367
facing: 0.583
pos: 0.578
overall: 0.509
Local:
dir: 0.700
facing: 1
pos: 0.776
overall: 0.825
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.366
is_action_fail: False
step: 15
action_counts:
move: 3
rotate: 13
return: 0
observe: 15
term: 0
forced_term: 0
query: 0
information_gain: 0.625
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 15
Current state
State at Turn 15

🔄 Turn 16

💬 Assistant Action
Actions: [JumpTo(toilet), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -7
    ],
    "facing": "south"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -4,
      5
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -4,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      -9
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -2,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -3,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -2,
        3
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        2,
        3
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
{
  "cap": {
    "position": [
      -2,
      2
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      2,
      2
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        -2,
        3
      ],
      "facing": "+y"
    },
    "television": {
      "position": [
        2,
        3
      ],
      "facing": "-y"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#B.C...#
#......+......#
#......#F.E...#
#......#AD....#
###########+###
######......###
######......###
######......###
######...*..###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: A, F, D
🧠 Cognitive Map Metrics
Global:
dir: 0.691
facing: 1
pos: 0.831
overall: 0.841
Global (Full):
dir: 0.317
facing: 0.667
pos: 0.554
overall: 0.512
Local:
dir: 1
facing: 1
pos: 0.877
overall: 0.959
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.415
is_action_fail: False
step: 16
action_counts:
move: 4
rotate: 13
return: 0
observe: 16
term: 0
forced_term: 0
query: 0
information_gain: 0.643
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 16
Current state
State at Turn 16

🔄 Turn 17

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -2,
      -6
    ],
    "facing": "west"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "plant": {
    "position": [
      2,
      -3
    ]
  },
  "scooter": {
    "position": [
      2,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -7
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -2,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      -7
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -3,
      -7
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "television": {
      "position": [
        -1,
        2
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "television": {
    "position": [
      -2,
      2
    ],
    "facing": "north"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "television": {
      "position": [
        -1,
        2
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#E.....#
#......#.....C#
#......+......#
#......#A.....#
#......#DB.F..#
###########+###
######......###
######......###
######......###
######...*..###
######......###
######......###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: B, A, D
🧠 Cognitive Map Metrics
Global:
dir: 0.745
facing: 1
pos: 0.827
overall: 0.858
Global (Full):
dir: 0.342
facing: 0.667
pos: 0.551
overall: 0.520
Local:
dir: 1
facing: 1
pos: 0.877
overall: 0.959
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.415
is_action_fail: False
step: 17
action_counts:
move: 4
rotate: 14
return: 0
observe: 17
term: 0
forced_term: 0
query: 0
information_gain: 0.643
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 17
Current state
State at Turn 17

🔄 Turn 18

💬 Assistant Action
Actions: [JumpTo(television), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "west"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "plant": {
    "position": [
      1,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -6
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -8
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -6
    ],
    "facing": "west"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "south"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "west"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "west"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {}
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#......#
#......#......#
#......+....DB#
#......#C.....#
#......#FA..E.#
###########+###
######......###
######......###
######......###
######......###
######......###
######.*....###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: F, C, A
🧠 Cognitive Map Metrics
Global:
dir: 0.927
facing: 0.500
pos: 0.920
overall: 0.783
Global (Full):
dir: 0.425
facing: 0.333
pos: 0.614
overall: 0.457
Local:
(none)
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.415
is_action_fail: False
step: 18
action_counts:
move: 5
rotate: 14
return: 0
observe: 18
term: 0
forced_term: 0
query: 0
information_gain: 0.643
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 18
Current state
State at Turn 18

🔄 Turn 19

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -4,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -4,
      2
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "green chair": {
    "position": [
      -2,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -2,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -4,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -4,
      -9
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        0,
        4
      ],
      "facing": "+x"
    },
    "green chair": {
      "position": [
        -2,
        4
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        -2,
        3
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
{
  "toilet": {
    "position": [
      -2,
      2
    ],
    "facing": "south"
  },
  "cap": {
    "position": [
      0,
      4
    ],
    "facing": "south"
  },
  "green chair": {
    "position": [
      -2,
      4
    ],
    "facing": "east"
  }
}
📊 Cognitive Map JSONs
🤖 Predicted
{
  "origin": "agent",
  "objects": {
    "cap": {
      "position": [
        0,
        4
      ],
      "facing": "+x"
    },
    "green chair": {
      "position": [
        -2,
        4
      ],
      "facing": "+y"
    },
    "toilet": {
      "position": [
        -2,
        3
      ],
      "facing": "+x"
    }
  }
}
🎯 Ground Truth
(no data)
🗺️ Symbolic Fog Map
###############
#......#......#
#......#..E...#
#......#......#
#......+..C...#
#......#F..A..#
#......#DB....#
###########+###
######......###
######......###
######......###
######......###
######......###
######.*....###
###############
🔍 Fog Probe JSONs
📍 Candidates: A, B, C, D, E, F
🤖 Predicted: A, B, C, D, E, F
🎯 Ground Truth: F, B, D
🧠 Cognitive Map Metrics
Global:
dir: 0.800
facing: 0.875
pos: 0.872
overall: 0.849
Global (Full):
dir: 0.367
facing: 0.583
pos: 0.581
overall: 0.510
Local:
dir: 1
facing: 1
pos: 0.927
overall: 0.976
Local (Newly):
(none)
Fog Probe:
precision: 0.500
recall: 1
overall: 0.667
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.439
is_action_fail: False
step: 19
action_counts:
move: 5
rotate: 15
return: 0
observe: 19
term: 0
forced_term: 0
query: 0
information_gain: 0.643
reward: -0.100
is_done: False
is_valid_action: True
Previous state
State before Turn 19
Current state
State at Turn 19

🔄 Turn 20

💬 Assistant Action
Actions: [Term()]
📊 Cognitive Map JSONs
🤖 Predicted
{
  "agent": {
    "position": [
      -3,
      -8
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      0,
      -3
    ]
  },
  "plant": {
    "position": [
      2,
      -2
    ]
  },
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "teddybear": {
    "position": [
      -3,
      5
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -5,
      5
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      0,
      -6
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      0,
      -8
    ],
    "facing": "south"
  },
  "toilet": {
    "position": [
      -2,
      -6
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -3,
      -8
    ],
    "facing": "north"
  }
}
🎯 Ground Truth (Observed)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "east"
  }
}
🎯 Ground Truth (Full)
{
  "scooter": {
    "position": [
      1,
      3
    ],
    "facing": "east"
  },
  "shoppingcart": {
    "position": [
      -7,
      3
    ],
    "facing": "north"
  },
  "green chair": {
    "position": [
      -1,
      -7
    ],
    "facing": "east"
  },
  "truck": {
    "position": [
      -3,
      1
    ],
    "facing": "east"
  },
  "airplane": {
    "position": [
      -11,
      3
    ],
    "facing": "west"
  },
  "cap": {
    "position": [
      -1,
      -9
    ],
    "facing": "south"
  },
  "teddybear": {
    "position": [
      -3,
      3
    ],
    "facing": "east"
  },
  "plant": {
    "position": [
      1,
      -2
    ],
    "facing": "east"
  },
  "laptop": {
    "position": [
      -7,
      -1
    ],
    "facing": "north"
  },
  "toilet": {
    "position": [
      -3,
      -7
    ],
    "facing": "south"
  },
  "backpack": {
    "position": [
      -11,
      1
    ],
    "facing": "east"
  },
  "television": {
    "position": [
      -5,
      -9
    ],
    "facing": "north"
  },
  "red door": {
    "position": [
      -5,
      0
    ],
    "facing": "east"
  },
  "brown door": {
    "position": [
      -1,
      -3
    ],
    "facing": "north"
  },
  "agent": {
    "position": [
      -5,
      -9
    ],
    "facing": "east"
  }
}
🧠 Cognitive Map Metrics
Global:
dir: 0.800
facing: 1
pos: 0.765
overall: 0.855
Global (Full):
dir: 0.367
facing: 0.667
pos: 0.510
overall: 0.514
Local:
(none)
Local (Newly):
(none)
Fog Probe:
(none)
📈 Turn Metrics
node_coverage: 0.643
edge_coverage: 0.439
is_action_fail: False
step: 20
action_counts:
move: 5
rotate: 15
return: 0
observe: 19
term: 1
forced_term: 0
query: 0
information_gain: 0.643
reward: -0.100
is_done: True
is_valid_action: True
Previous state
State before Turn 20
Current state
State at Turn 20

🧭 False Belief Exploration

🔄 FB Turn 21

💬 Assistant Action
Actions: [Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.394
facing: 0.375
pos: 0.356
overall: 0.375
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 1
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['scooter']
Current state
State at Turn 1

🔄 FB Turn 22

💬 Assistant Action
Actions: [Rotate(-90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: airplane:
dir: None
pos: 0.877
facing: None
overall: None
Retention: airplane:
dir: None
pos: None
facing: None
overall: None
Unchanged (all):
dir: 0.652
facing: 0.750
pos: 0.781
overall: 0.728
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): ['airplane']
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: ['airplane']
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 2
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['airplane']
newly_observed_unchanged_objects: ['red door', 'truck']
Previous state
State before Turn 2
Current state
State at Turn 2

🔄 FB Turn 23

💬 Assistant Action
Actions: [JumpTo(red door), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: laptop:
dir: None
pos: None
facing: 0
overall: None
Retention: laptop:
dir: None
pos: None
facing: None
overall: None
Unchanged (all):
dir: 0.697
facing: 0.250
pos: 0.821
overall: 0.589
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): ['laptop']
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: ['laptop']
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 3
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['laptop']
newly_observed_unchanged_objects: ['backpack']
Previous state
State before Turn 3
Current state
State at Turn 3

🔄 FB Turn 24

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.424
facing: 0.125
pos: 0.769
overall: 0.440
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 4
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: ['brown door', 'plant']
Previous state
State before Turn 4
Current state
State at Turn 4

🔄 FB Turn 25

💬 Assistant Action
Actions: [JumpTo(brown door), Rotate(-90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.379
facing: 0.500
pos: 0.567
overall: 0.482
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 5
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 5
Current state
State at Turn 5

🔄 FB Turn 26

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Changed: television:
dir: None
pos: None
facing: 0
overall: None
Retention: television:
dir: None
pos: None
facing: 0
overall: None
Changed: teddybear:
dir: None
pos: 0.746
facing: None
overall: None
Retention: teddybear:
dir: None
pos: 0.198
facing: None
overall: None
Unchanged (all):
dir: 0.530
facing: 0.625
pos: 0.740
overall: 0.632
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): ['teddybear', 'television']
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: ['teddybear', 'television']
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 6
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: ['television', 'teddybear']
newly_observed_unchanged_objects: ['cap', 'toilet', 'green chair']
Previous state
State before Turn 6
Current state
State at Turn 6

🔄 FB Turn 27

💬 Assistant Action
Actions: [Rotate(180), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.667
facing: 1
pos: 0.660
overall: 0.775
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 7
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 7
Current state
State at Turn 7

🔄 FB Turn 28

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.591
facing: 0.750
pos: 0.789
overall: 0.710
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 8
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 8
Current state
State at Turn 8

🔄 FB Turn 29

💬 Assistant Action
Actions: [JumpTo(green chair), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.758
facing: 0.750
pos: 0.824
overall: 0.777
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 9
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 9
Current state
State at Turn 9

🔄 FB Turn 30

💬 Assistant Action
Actions: [Rotate(90), Observe()]
📈 Turn Metrics
reward: -0.100
is_done: False
is_valid_action: True
🧭 False Belief Cogmap Metrics
Unchanged (all):
dir: 0.500
facing: 0.375
pos: 0.722
overall: 0.532
🧾 False Belief Object Sets
all_objects: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
all_changed_objects: ['airplane', 'laptop', 'teddybear', 'television']
newly_observed_changed (this turn): []
unchanged_objects: ['backpack', 'brown door', 'cap', 'green chair', 'plant', 'red door', 'scooter', 'shoppingcart', 'toilet', 'truck']
pred_changed_keys: []
pred_unchanged_keys: ['airplane', 'backpack', 'brown door', 'cap', 'green chair', 'laptop', 'plant', 'red door', 'scooter', 'shoppingcart', 'teddybear', 'television', 'toilet', 'truck']
🧭 False Belief Info
step: 10
correctly_identified_changes: None
f1_overall: None
f1_position: None
f1_facing: None
action_cost: None
action_cost_after_seen: None
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: []
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 10
Current state
State at Turn 10

🔄 FB Turn 31

💬 Assistant Action
Actions: [Term(changes="teddybear: position, television: orientation, airplane: position, truck: orientation")]
📈 Turn Metrics
reward: 0.750
is_done: True
is_valid_action: True
success: 0.750
🧭 False Belief Info
step: 11
correctly_identified_changes: 0.750
f1_overall: 0.750
f1_position: 1
f1_facing: 0.500
action_cost: 10
action_cost_after_seen: 4
ground_truth_changes: [{'name': 'laptop', 'ori': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'teddybear', 'pos': True}]
reported_changes: [{'name': 'teddybear', 'pos': True}, {'name': 'television', 'ori': True}, {'name': 'airplane', 'pos': True}, {'name': 'truck', 'ori': True}]
newly_observed_changed_objects: []
newly_observed_unchanged_objects: []
Previous state
State before Turn 11
Current state
State at Turn 11

📊 Evaluation (default)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: default
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: default
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [9.0, 11.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: default
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [11.0, 7.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: default
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
error: target_not_visible
score: 0
evaluation_mode: default
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.359
threshold: 0.900
score: 0.359
evaluation_mode: default
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.784
threshold: 0.900
score: 0.784
evaluation_mode: default
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.452
threshold: 0.900
score: 0.452
evaluation_mode: default
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotEvaluationTask

📊 Task: RotDualEvaluationTask

Question 1 (ID: 89475accf17d4665)

✅ Evaluation Results
id: 89475accf17d4665
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: shoppingcart, laptop, green chair Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q1: RotDualEvaluationTask

Question 2 (ID: 058612f0c21d8b04)

✅ Evaluation Results
id: 058612f0c21d8b04
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: truck, green chair, plant, scooter Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q2: RotDualEvaluationTask

Question 3 (ID: e44020cfb70d49b0)

✅ Evaluation Results
id: e44020cfb70d49b0
question: You return to your starting position and face north. You performed a complete 360° rotation in place. Assume all walls are removed (you can see through walls), so every object is visible. During the rotation, these objects appeared directly in front of you in this order: truck, green chair, plant Based on this sequence, in which direction did you rotate? Answer format: clockwise or counterclockwise Example: clockwise
action: None
answer: counterclockwise
task_type: RotDualEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: default
Evaluation state
Q3: RotDualEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: default
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2LocationEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: default
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.368
raw_score: 0.368
score: 0.368
evaluation_mode: default
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.819
raw_score: 0.819
score: 0.819
evaluation_mode: default
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: Location2ActionTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: default
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (prompt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [9.0, 11.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [11.0, 7.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [11.0, 1.0]
final_ori: [-1, 0]
visible_match: True
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
error: mismatched_coordinate_count
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.884
threshold: 0.900
score: 0.884
evaluation_mode: prompt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
error: mismatched_coordinate_count
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: prompt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: prompt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.368
raw_score: 0.368
score: 0.368
evaluation_mode: prompt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.639
raw_score: 0.639
score: 0.639
evaluation_mode: prompt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.199
raw_score: 0.199
score: 0.199
evaluation_mode: prompt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_gt_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: True
final_pos: [7.0, 10.0]
final_ori: [1, 0]
visible_match: True
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
error: target_not_visible
score: 0
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
error: target_not_visible
score: 0
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
threshold: 0.900
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_gt_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask

📊 Evaluation (use_model_cogmap)

📊 Task: DirectionEvaluationTask

Question 1 (ID: 583ff194ce53a312)

✅ Evaluation Results
id: 583ff194ce53a312
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to scooter. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: DirectionEvaluationTask

Question 2 (ID: 47fca34d599857c1)

✅ Evaluation Results
id: 47fca34d599857c1
question: You return to your starting position and face north. From a Top-Down map, describe where truck is relative to green chair. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north, far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0.500
evaluation_mode: use_model_cogmap
Evaluation state
Q2: DirectionEvaluationTask

Question 3 (ID: 108ff9b4dbbe7799)

✅ Evaluation Results
id: 108ff9b4dbbe7799
question: You return to your starting position and face north. From a Top-Down map, describe where shoppingcart is relative to truck. Answer format: <cardinal direction>, <distance> Example: north-west, near
action: None
answer: north west, slightly far
task_type: DirectionEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: DirectionEvaluationTask

📊 Task: PovEvaluationTask

Question 1 (ID: 77b726d65cc6b33c)

✅ Evaluation Results
id: 77b726d65cc6b33c
question: Now you jump to toilet's direction, facing its direction. Describe where cap is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-left, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q1: PovEvaluationTask

Question 2 (ID: 25bf253d96fdcb35)

✅ Evaluation Results
id: 25bf253d96fdcb35
question: Now you jump to backpack's direction, facing its direction. Describe where laptop is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, slightly far
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: PovEvaluationTask

Question 3 (ID: 49542b54da7d1812)

✅ Evaluation Results
id: 49542b54da7d1812
question: Now you jump to television's direction, facing its direction. Describe where toilet is relative to you. Answer format: <ego direction>, <distance> Example: front-left, near
action: None
answer: front-right, mid distance
task_type: PovEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: PovEvaluationTask

📊 Task: BackwardPovTextEvaluationTask

Question 1 (ID: f90bc1e2211507f1)

✅ Evaluation Results
id: f90bc1e2211507f1
question: Now you jump to an object's position, facing its direction. You observe that scooter is front-left, slightly far, facing forward; plant is front-right, slightly far. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: truck
final_pos: [9, 11]
final_ori: [1, 0]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': None}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 1
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: BackwardPovTextEvaluationTask

Question 2 (ID: 52fa8addbc3250f7)

✅ Evaluation Results
id: 52fa8addbc3250f7
question: Now you jump to an object's position, facing its direction. You observe that shoppingcart is front-left, slightly far, facing left; laptop is front-right, slightly far, facing left; red door is front-slight-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: backpack
final_pos: [1, 11]
final_ori: [1, 0]
final_observation: [{'name': 'shoppingcart', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'laptop', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 2
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: False
view_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: BackwardPovTextEvaluationTask

Question 3 (ID: 0164361f1d8a8c03)

✅ Evaluation Results
id: 0164361f1d8a8c03
question: Now you jump to an object's position, facing its direction. You observe that toilet is front-right, mid distance, facing backward; brown door is front-right, slightly far, on front wall. Which object are you standing at? Answer format: <object_name> Example: lamp
action: None
answer:
answer: television
final_pos: [7, 1]
final_ori: [0, 1]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing backward'}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
object_positions:
scooter: [13.0, 13.0]
shoppingcart: [5.0, 13.0]
green chair: [11.0, 3.0]
truck: [9.0, 11.0]
airplane: [1.0, 13.0]
cap: [11.0, 1.0]
teddybear: [9.0, 13.0]
plant: [13.0, 8.0]
laptop: [5.0, 9.0]
toilet: [9.0, 3.0]
backpack: [1.0, 11.0]
television: [7.0, 1.0]
red door: [7.0, 10.0]
brown door: [11.0, 7.0]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
room_id: 3
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: BackwardPovTextEvaluationTask
choices: []
kwargs:
(none)
name_match: True
view_match: True
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: BackwardPovTextEvaluationTask

📊 Task: Action2ViewEvaluationTask

Question 1 (ID: 63c750790aa08aed)

✅ Evaluation Results
id: 63c750790aa08aed
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-left, mid distance. After executing the actions, what is the ego relation of backpack relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Action2ViewEvaluationTask

Question 2 (ID: 6412baabea12ca22)

✅ Evaluation Results
id: 6412baabea12ca22
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-90) 2. Jump to the object at front, slightly far. 3. Jump to the object at front-slight-right, slightly far. 4. Rotate(-180) After executing the actions, what is the ego relation of laptop relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front-right, slightly far
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Action2ViewEvaluationTask

Question 3 (ID: ea1bd9387f8ac037)

✅ Evaluation Results
id: ea1bd9387f8ac037
question: You return to your starting position and face north. You will execute the following action sequence: 1. Rotate(-180) 2. Jump to the object at front-slight-right, mid distance. 3. Jump to the object at front, mid distance. 4. Rotate(-180) After executing the actions, what is the ego relation of brown door relative to you? Answer format: <ego direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Action2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Action2ViewEvaluationTask

📊 Task: View2ActionTextEvaluationTask

Question 1 (ID: 6c52792d9caa463c)

✅ Evaluation Results
id: 6c52792d9caa463c
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: scooter is at front-left, slightly far, facing forward; plant is at front-slight-right, slightly far; brown door is at front-right, slightly far, on right wall What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'brown door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on right wall'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: True
final_pos: [9.0, 13.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2ActionTextEvaluationTask

Question 2 (ID: 3732a26a9f623bf3)

✅ Evaluation Results
id: 3732a26a9f623bf3
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: plant is at front-slight-right, slightly far; scooter is at front-left, slightly far, facing forward; truck is at front-left, mid distance, facing forward What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [7, 10]
final_ori: [1, 0]
room_id: [2, 1]
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', -90], ['jumpto', 'initial_pos'], ['rotate', 180]]
final_observation: [{'name': 'plant', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': None}, {'name': 'scooter', 'direction': 'front-left', 'distance': 'slightly far', 'orientation': 'facing forward'}, {'name': 'truck', 'direction': 'front-left', 'distance': 'mid distance', 'orientation': 'facing forward'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: False
ori_match: False
final_pos: [11.0, 7.0]
final_ori: [0, 1]
visible_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2ActionTextEvaluationTask

Question 3 (ID: ea10b24ed30f3b20)

✅ Evaluation Results
id: ea10b24ed30f3b20
question: You return to your starting position and face north. Then you have executed an action sequence and changed to a new location and facing direction. You observe the following: toilet is at front-right, mid distance, facing left; television is at front, mid distance, facing right What action sequence led to this final view? The action sequence must be valid and only contain move actions. Answer format: <sequence of move actions> Example: JumpTo(lamp), Rotate(90)
action: None
answer:
final_pos: [11, 1]
final_ori: [-1, 0]
room_id: 3
init_pos: [12, 10]
init_ori: [0, 1]
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
minimal_plan: [['rotate', 180], ['jumpto', 'brown door'], ['jumpto', 'cap'], ['rotate', 90]]
final_observation: [{'name': 'toilet', 'direction': 'front-right', 'distance': 'mid distance', 'orientation': 'facing left'}, {'name': 'television', 'direction': 'front', 'distance': 'mid distance', 'orientation': 'facing right'}]
task_type: View2ActionTextEvaluationTask
choices: []
kwargs:
(none)
pos_match: True
ori_match: False
final_pos: [11.0, 1.0]
final_ori: [1, 0]
visible_match: False
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2ActionTextEvaluationTask

📊 Task: AlloMappingEvaluationTask

Question 1 (ID: 8af89065720ad8db)

✅ Evaluation Results
id: 8af89065720ad8db
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: shoppingcart, scooter, laptop. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-7, 3], [1, 3], [-7, -1]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
error: mismatched_coordinate_count
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: AlloMappingEvaluationTask

Question 2 (ID: f662c4ad95bb2232)

✅ Evaluation Results
id: f662c4ad95bb2232
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, green chair, teddybear, scooter, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-1, -7], [-3, 3], [1, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.592
threshold: 0.900
score: 0.592
evaluation_mode: use_model_cogmap
Evaluation state
Q2: AlloMappingEvaluationTask

Question 3 (ID: a8bd9bc1b10b893e)

✅ Evaluation Results
id: a8bd9bc1b10b893e
question: Treat your starting position as the origin (0, 0) while facing north. Report allocentric coordinates using (x right/east, y up/north). Objects: truck, shoppingcart, plant. Answer format: (x0, y0); (x1, y1); ... in the same order. Example: (1, 0); (-2, 3); (0, -1)
action: None
answer: [[-3, 1], [-7, 3], [1, -2]]
task_type: AlloMappingEvaluationTask
choices: []
kwargs:
(none)
error: mismatched_coordinate_count
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: AlloMappingEvaluationTask

📊 Task: RotEvaluationTask

Question 1 (ID: 8d54e45588e4d433)

✅ Evaluation Results
id: 8d54e45588e4d433
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, laptop, shoppingcart. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['shoppingcart', 'laptop', 'green chair']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: RotEvaluationTask

Question 2 (ID: d79c067009e69829)

✅ Evaluation Results
id: d79c067009e69829
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, scooter, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant', 'scooter']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q2: RotEvaluationTask

Question 3 (ID: 6888c41ba1414d8a)

✅ Evaluation Results
id: 6888c41ba1414d8a
question: You return to your starting position and face north. You will perform a full 360-degree rotation by continuously turning counterclockwise in place. Assume all walls are removed (you can see through walls), so every object is visible. Focus on this set of objects: green chair, plant, truck. List them in the exact order they appear directly ahead while you rotate. If two objects share a bearing, place the nearer one first. Answer format: <object_name1>, <object_name2>, ... Example: mug, sofa, plant
action: None
answer: ['truck', 'green chair', 'plant']
task_type: RotEvaluationTask
choices: []
kwargs:
(none)
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: RotEvaluationTask

📊 Task: Location2ViewEvaluationTask

Question 1 (ID: 124fa9437e2c6a92)

✅ Evaluation Results
id: 124fa9437e2c6a92
question: Treat the red door as the new 'origin' (0, 0). You move to (-5, 2) and face west. What is the egocentric relation of airplane? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front-right, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q1: Location2ViewEvaluationTask

Question 2 (ID: 2628716be474f0bc)

✅ Evaluation Results
id: 2628716be474f0bc
question: Treat the red door as the new 'origin' (0, 0). You move to (-4, 3) and face east. What is the egocentric relation of shoppingcart? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, near
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q2: Location2ViewEvaluationTask

Question 3 (ID: 74c4c67f29139097)

✅ Evaluation Results
id: 74c4c67f29139097
question: Still treat your initial position as origin (0, 0) You move to (1, 2) and face south. What is the egocentric relation of plant? Answer format: <direction>, <distance> Example: front, near
action: None
answer: front, mid distance
task_type: Location2ViewEvaluationTask
choices: []
kwargs:
(none)
score: 0
evaluation_mode: use_model_cogmap
Evaluation state
Q3: Location2ViewEvaluationTask

📊 Task: View2LocationTextEvaluationTask

Question 1 (ID: 4433d7003fa00dbc)

✅ Evaluation Results
id: 4433d7003fa00dbc
question: You move to a new location and face west. You observe: airplane is at front-right, near, facing forward; backpack is at front-left, near, facing backward Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-5, 2]
final_pos: [2, 12]
final_ori: [-1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'airplane', 'direction': 'front-right', 'distance': 'near', 'orientation': 'facing forward'}, {'name': 'backpack', 'direction': 'front-left', 'distance': 'near', 'orientation': 'facing backward'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.368
raw_score: 0.368
score: 0.368
evaluation_mode: use_model_cogmap
Evaluation state
Q1: View2LocationTextEvaluationTask

Question 2 (ID: 439fe7bf768dde78)

✅ Evaluation Results
id: 439fe7bf768dde78
question: You move to a new location and face east. You observe: shoppingcart is at front, near, facing left; red door is at front-right, slightly far, on front wall Treat the red door as the new 'origin' (0, 0). What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [-4, 3]
final_pos: [3, 13]
final_ori: [1, 0]
room_id: 2
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'shoppingcart', 'direction': 'front', 'distance': 'near', 'orientation': 'facing left'}, {'name': 'red door', 'direction': 'front-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 0.819
raw_score: 0.819
score: 0.819
evaluation_mode: use_model_cogmap
Evaluation state
Q2: View2LocationTextEvaluationTask

Question 3 (ID: 55cf256e6a550f6e)

✅ Evaluation Results
id: 55cf256e6a550f6e
question: You move to a new location and face south. You observe: plant is at front, mid distance; brown door is at front-slight-right, slightly far, on front wall Still treat your initial position as origin (0, 0) What is your new 2D coordinate (x, y)? Answer format: (x, y) Example: (2, -1)
action: None
answer:
coord: [1, 2]
final_pos: [13, 12]
final_ori: [0, -1]
room_id: 1
object_positions:
scooter: [13, 13]
shoppingcart: [5, 13]
green chair: [11, 3]
truck: [9, 11]
airplane: [1, 13]
cap: [11, 1]
teddybear: [9, 13]
plant: [13, 8]
laptop: [5, 9]
toilet: [9, 3]
backpack: [1, 11]
television: [7, 1]
red door: [7, 10]
brown door: [11, 7]
object_orientations:
scooter: [1, 0]
shoppingcart: [0, 1]
green chair: [1, 0]
truck: [1, 0]
airplane: [-1, 0]
cap: [0, -1]
teddybear: [1, 0]
laptop: [0, 1]
toilet: [0, -1]
backpack: [1, 0]
television: [0, 1]
red door: [1, 0]
brown door: [0, 1]
final_observation: [{'name': 'plant', 'direction': 'front', 'distance': 'mid distance', 'orientation': None}, {'name': 'brown door', 'direction': 'front-slight-right', 'distance': 'slightly far', 'orientation': 'on front wall'}]
gate_info:
red door:
room_ids: [2, 1]
ori_by_room:
2: [-1, 0]
1: [1, 0]
brown door:
room_ids: [3, 1]
ori_by_room:
3: [0, -1]
1: [0, 1]
object_rooms:
scooter: 1
shoppingcart: 2
green chair: 3
truck: 1
airplane: 2
cap: 3
teddybear: 1
plant: 1
laptop: 2
toilet: 3
backpack: 2
television: 3
red door: [2, 1]
brown door: [3, 1]
task_type: View2LocationTextEvaluationTask
choices: []
kwargs:
(none)
similarity: 1
raw_score: 1
score: 1
evaluation_mode: use_model_cogmap
Evaluation state
Q3: View2LocationTextEvaluationTask